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EINLEITUNG

Elektrische Servoantriebe wurden in der Vergangenheit meist mit Gleichstrommotoren rea-
lisiert. Gleichstrommotoren besitzen gegentber Synchron- und Asynchronmotoren den
Vorteil der leichten Steuerbarkeit. Dem steht der Nachteil der Wartungsbeduftigkeit wegen
der mechanischen Bursten und das grof3ere Bauvolumen sowie das groRere Tragheitsmo-
ment gegenuber.

Insbesondere seit der Entwicklung neuer Magnetwerkstoffe mit hoher Remanenzfeldstarke
gewinnen permanentmagnetisch erregte Synchronmotoren immer groRere Bedeutung.
Diese Entwicklung wird zudem begunstigt durch die rasche Entwicklung auf dem Gebiet
der Halbleitertechnik, die Transistoren immer grof3erer Leistung verfugbar gemacht hat.
Dank der Fortschritte auf dem Gebiet der Mikroelektronik, die.in zunehmendem Malde digi-
tale Bausteine mit grol3er Leistungsfahigkeit zu zumutbaren Preisen bereitstellt, lassen
sich auch komplizierte Steuer- und Regelungsaufgaben bewaltigen.

In dieser Arbeit wird ausgehend von den Gleichungen der allgemeinen Synchronmaschine
unter Benutzung der Raumzeigerdarstellung das Gleichungssystem der permanentmagne-
tisch erregten Synchronmaschine entwickelt. Daneben werden die Gleichungen auch in
Matrixform dargestellt.

Durch Einfuhrung bezogener GréRen wird eine wesentliche Vereinfachung der Maschinen-
gleichungen erreicht.

Das Ubertragungsverhalten der Synchronmaschine bei konstanter Rotorwinkelgeschwin-
digkeit wird untersucht.

Das stationare Verhalten der Synchronmaschine wird untersucht.

Im Vordergrund stehen hier der Einflu® der Maschinen- und Systemparameter auf die
Drehmoment-Drehzahl-Charakteristik und die Methoden zur Vorsteuerung des Stromzei-
gers.

Das dynamische Verhalten des Systems wird abhangig vom zugrunde gelegten Bezugs-
system untersucht.

Es werden verschiedene Verfahren zur Erzeugung der Strangspannungen durch Pulsbrei-
tenmodulation aus der Zwischenkreisgleichspannung untersucht und miteinander vergli-
chen.

Ferner werden drei Verfahren zur Spannungszeigersynthese durch Zeigerkombination un-
tersucht.

Die Stérungen der Bahn des Stromzeigers und die damit verbundenen Schwankungen
des von der Maschine erzeugten Moments infolge des diskontinuierlichen Verlaufs der

Strangspannungen werden untersucht.



Die meisten der hier erzielten Resultate finden sich in der benutzten Literatur. Zu erwah-
nen sind insbesondere die Arbeiten von Buehler/1/, Grotstollen/3/ und Orlik/8/.

Nicht aus der Literatur entwickelt wurde die hier durchgefuhrte Einfuhrung bezogener Gro-
Ren (Kapitel 2), die Ableitungen in den Abschnitten 1.2.6 und 7.3.1 sowie die Berechnun-
gen in Abschnitt 7.5.

Bezeichnungen

Komplexe GroBen x werden durch Unterstreichung x gekennzeichnet. Die zu x konju-

giert komplexe GroBe wird mit x* bezeichnet.

1. Das Maschinenmodell
1.1 Mathematisches Modell der Synchronmaschine

1.1.1 Allgemeines

Die Herleitung der Gleichungen der Synchronmaschine erfolgt nach /| BUHLER/.

Es wird eine im Stern geschaltete Synchronmaschine ohne Dampferwicklungen und ohne
Nullpunktbelastung zugrunde gelegt.

Bei der Ableitung werden die Eisenverluste in der Maschine vernachlassigt. Die Sattigung
der magnetischen Kreise wird nicht bertcksichtigt. Die raumlich verteilten Wicklungen wer-

den durch konzentrierte Wicklungen ersetzt.

1.1.2 Die Spannungsgleichungen
Im Folgenden wird die Zuordnung der Grofden zu den einzelnen Strangen durch die tiefge-
stellten Indices a, b und c gekennzeichnet. Der tiefgestellte Index e kennzeichnet die Zu-
ordnung einer Grole zum Feldkreis. Der fir alle Strange gleiche Widerstand der
Strangwicklung wird mit R bezeichnet. Der Momentanwert der Strangspannung wird mit u,
der Momentanwert des Strangstroms mit i bezeichnet. Der Buchstabe V bezeichnet den
mit dem betreffenden Strang verknupften FluR. Die Spannungsgleichungen fur die Strange
des Stators lauten:

Ua = iaxR + dWa/dt

Ub = ibxR + dWp/dt (1.1.2.1)

Uc = icxR + dWc/dt
Die Spannungsgleichung fir die Feldwicklung des Rotors lautet:

Ue = ie xR + dWe/dt (1.1.2.2)



1.1.3 DIE EINFUHRUNG VON RAUMZEIGERN
Die Stranggrofen sind, wie oben gezeigt, linear voneinander abhangig. Es ist also mog-
lich, die drei Stranggrof3en durch zwei voneinander unabhangige Grofden auszudrucken.

Zunachst wird die Konstante a definiert durch:

a=elms (1.1.3.1)
Es gelten dann die Beziehungen:

a=-1/2+{3/2 (1.1.3.2)

1+a+a?=0 (1.1.3.3)

a’=a'l=ax (1.1.3.4)

Sind Xa, Xb und Xxc drei StranggroRen, so wird der zugeordnete Raumzeiger x definiert durch:
X = 2/3 x(Xa + Xb *@ + Xc *xa@?) (1.1.3.5)
Es werden nun zwei Systeme von Stranggrofien Xa, Xb, Xc Und Xa', Xb', Xc* betrachtet.
Wir nehmen an, dal} die zugeordneten Raumzeiger identisch sind: x' = x.
Durch Einsetzen der Definitionen und Umformen erhalt man nun:
(Xa’- Xa) + (Xp' = Xp)*@ + (Xc’ = Xc )*xa% =0
Durch Subtraktion der Gleichung: (xc '-xc )*( 1 + a + a?) = 0 folgt:
((xa’=Xa )= (Xc’=Xc ) )+ ((Xb’=-Xpb ) = (X’ Xc ))*xa =0
Da der erste Summand reell ist, wahrend der zweite Summand komplex ist, ergibt sich hie-
raus:
(Xa’= Xa) = (Xc’= Xc) = 0 und (xb’= Xb) = (Xc’= Xc) = 0
Dies kann einfacher auch in der Form :
Xa’= Xa = Xb’= Xb = Xc’= Xc (1.1.3.6)
geschrieben werden.
Gilt umgekehrt die Gleichung (1.1.3.6) so kann mit k= xa’- Xxa geschrieben werden:
X' = 2/3 x((Xatk) + (xp+k)*a + (Xc+k)*a?)
Hieraus folgt unter Verwendung von (1.1.3.3) nun x’ = x.
Zwei Systeme von StranggréfRRen besitzen also genau dann den gleichen Raumzeiger,
wenn die Bedingung (1.1.3.6) gilt.
Die Bedingung:
Xa+ Xb + Xc = K (1.1.3.7)
, wobei k eine Konstante ist, ist eine hinreichende Bedingung fur die Eineindeutigkeit der
Darstellung von Stranggrof3en durch Raumzeiger, wie im Folgenden gezeigt wird.
Die Notwendigkeit dieser Bedingung fur die Eineindeutigkeit der Darstellung ergibt sich un-

mittelbar aus Gleichung (1.1.3.6).



Far ein zweites System von StranggrofRen xa',xo',Xc’ erhalt man bei Gultigkeit von (1.1.3.7)
die Aussage:

Xa'= Xa = =(Xb’= Xb) = (Xc’= Xc) (1.1.3.8)
Die Annahme identischer zugeordneter Raumzeiger x' = x liefert wie oben:

(Xa' = Xa) + (Xb' - Xb )*x@ + (Xc' - Xc) ¥@® =0
Mit Gleichung (1.1.3.8) folgt hieraus:

- (Xb'=Xb ) - (Xc' - Xc) + (Xb ' - Xb ) *@ + (X' - Xc) *@% =0
Durch Bildung von Real- und Imaginarteil erhalt man:

(Xo' - Xb ) + (Xc' - Xc) =0
Hieraus folgt, dal® die gestrichenen und ungestrichenen GroRen identisch sind.
Im Folgenden wird die scharfere Bedingung:

Xa+Xp+Xc=0 (1.1.3.9)

zugrunde gelegt.
Die Groen xa, Xb und xc kdnnen dann durch Projektion des Raumzeigers x auf die Achsen
1, a und a? gewonnen werden. Dies soll im Folgenden gezeigt werden. Aus der Definition
des Raumzeigers (1.1.3.5) folgt:

Re(x) = 2/3 * (xa+ xob*Re(a) + xcxRe(a?) )

Re(x) = 2/3 x (Xa + -1/2% (Xb + Xc ) )
Unter Verwendung von (1.1.3.9) folgt hieraus:

Re(x) = 2/3 x(xa + 1/2%xa) und daraus:

Xa = Re(x) (1.1.3.10)
Analog konnen die folgenden Beziehungen abgeleitet werden:

xb = Re(x*a") = -0,5%Re(x) +v/3/2 *Im(x) (1.1.3.11)

Xc = Re(x*a?) = -0,5%Re(x) - v3/2 xIm(x) (1.1.3.12)

Bild 1.1 zeigt das Entstehen der Stranggrof3en durch Projektion des Raumzeigers auf die
Achsen.
Ist x = x x € ? in Polarkoordinaten gegeben, so folgt:

Xa=X*xCoS (Q)

Xb = Re(xxel @ -1x273) = xx cos (@ - 211/3)

Xc = Re(xxel ®-*4113) = xx cos (¢ - 411/3)
Sind umgekehrt die drei Stranggrofien xa, xb und xc gegeben, so lassen sich hieraus die
Komponenten des zugeordneten Spannungszeigers nach den folgenden Formeln berech-
nen.
Gleichung (1.1.3.10) ist identisch mit

Re(X) = Xa (1.1.3.13)



BILD 1.1 Projektion des Raumzeigers auf die Achsen

Aus der Definition des Raumzeigers (1.1.3.5) folgt durch Bildung des Imaginarteils:

Im(x) = 2/3 * Im(Xa + Xb *a + Xc *a?)

Im(x) =2/3 *v/3/2 * (Xb - Xc )

Im(x) =1/7/3 (Xb - Xc ) (1.1.3.14)
Unter Verwendung der Beziehung (1.1.3.9) lassen sich diverse weitere Formeln herleiten.
Insbesondere wird erkennbar, daf} bereits die Kenntnis von zwei Stranggrolien zur Be-
stimmung des Raumzeigers ausreicht.
Fir die Lange |x| des Raumzeiger gilt:

IX|? = Xa? + 1/3 % (Xb - Xc)? (1.1.3.15)

1.1.4 DIE SPANNUNGSGLEICHUNG IN RAUMZEIGERDARSTELLUNG
Aus den Spannungsgleichungen (1.1.2.1) fUr die Statorstrange erhalt man durch Einfuh-
rung von Raumzeigern die komplexe Spannungsgleichung im statorfesten System:

u = xR + dWe/dt (1.1.4.1)
In der Literatur wird vielfach das System, in dem eine Grof3e definiert ist, durch einen der
Grolde zugeordneten Index bezeichnet.
/IBuehler /l/ benutzt hier den hochgestellten Index s zur Kennzeichnung der Gré3en im

statorfesten System und den hochgestellten Index r zur Kennzeichnung der Gréfden im ro-
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torfesten System. Um eine bessere Lesbarkeit der Formeln zu erreichen, wird auf die zu-
satzliche Indizierung der Grollen haufig verzichtet. Es wird dann jeweils explizit angege-

ben, welches Koordinatensystem zugrunde gelegt wird.

1.1.5 Drehung des KoordinatensystemsS

Werden bei einer komplexen Gleichung oder Differentialgleichung alle auftretenden Gro-
Ren mit dem Faktor el ® multipliziert, wobei ¢ eine reelle Zahl ist, so entspricht dies einer
Drehung des Koordinatensystems um den Winkel -¢,

Auf die in der Spannungsgleichung (1.1.5.1) auftretenden Gro3en kann nun eine Transfor-
mation:

XK = xx e1® (1.1.5.1)
angewendet werden. Der hochgestellte Index k bezeichnet dabei die GréRen im gedrehten
Koordinatensystem. Die Funktion ¢ = ¢ (t) wird als differenzierbar vorausgesetzt.

Die Umkehrtransformation ist gegeben durch:

X = xK xg e (1.1.5.2)
Durch Einsetzen in (1.1.4.1) erhalt man:

uk = "R + d(Wkxe®)/dt
Hieraus folgt:

uk = kR + dWK/dt + jxdp/dt xPx (1.1.5.3)

An dieser Stelle ist eine Betrachtung des Zusammengangs zwischen dem elektrischen
und dem mechanischen Rotorwinkel erforderlich. Der elektrische Rotorwinkel @el ergibt
sich aus dem mechanischen Rotorwinkel @mech durch Multiplikation mit der Polpaarzahl z,
der Maschine:

Pel = Zp *Pmech (1.1.5.4)
Die elektrische Winkelgeschwindigkeit des Rotors sei hier ohne kennzeichnende Indizie-
rung mit w bezeichnet. Sie ist definiert durch:

w = d@el/dt (1.1.5.5)
Der Zusammenhang zwischen der mechanischen Winkelgeschwindigkeit wmech und der
elektrischen Winkelgeschwindigkeit w ist gegeben durch:

Wmech = W/Zp (1.1.5.6)
Durch Wahl von

o(t) = -w*t+ @o (1.1.5.7
in Gleichung (1.1.5.1) erhalt man ein Koordinatensystem, das mit dem Rotor umlauft.
Hierin ist der Winkel @o zunachst noch frei wahlbar. Ein solches Koordinatensystem wird
als rotorfestes System bezeichnet. Die GrofRen in diesem System werden zur Kennzeich-

nung mit dem hochgestellten Index r versehen.
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Die Spannungsgleichung im rotorfesten System lautet nun:

u'=i"*R + d¥'/dt +jw " (1.1.5.8)
Ein spezielles rotorfestes System ist das d-q-System. Hierbei ist der Winkel ¢ so gewahlt,
dal} die reelle Achse des Koordinatensystems in der Rotorachse liegt.
Realteil bzw. Imaginarteil einer Grol3e x im d-g-System werden mit xa bzw xq bezeichnet:

X = Xd + JXq

1.1.6 HERLEITUNG DER LEISTUNGSGLEICHUNG

Der Momentanwert P der im Stator umgesetzten elektrischen Leistung ist gegeben durch:
P(t) = Uaxia + Ub*ib + Ucxic (1.1.6.1)

Es soll nun ein Ausdruck flr die Leistung unter Verwendung von Raumzeigern abgeleitet

werden. Die Ableitung erfolgt hier im statorfesten System. Wie man leicht nachpruft, laf3t

sich die Ableitung auch in jedem sich drehenden Koordinatensystem durchfiihren.

Durch Einsetzen der Definitionen von u und i. erhalt man:

Re(u**i) = Re (2/3 *(ua + @%*Ub + a*Uc) * 2/3 *(ia + axib + a?*ic))

Durch Umformung folgt hieraus:

Re(u*i) = 4/9 Re(Uaia + Ub ib + Uc ic + @ (Uaib +Ub ic + Ucia) + 8%(Uaic + Ubia + Ucib))

Mit Re(a) = Re(a?) = -1/2 folgt nun:

Re(u*i) = 4/9(uaia + Ub ib + Uc ic -1/2(Uaib + Ub ic + Uc ia + Uaic + Ubia + Ucib))

Re(u*i) = 4/9(uaia + Ub ib + Uc ic -1/2(Ua(ib+ic) + Ub(ictia) + Uc(iatib)))

Unter der Berlcksichtigung der Tatsache, dal die Summe der Strome Null ist, folgt:

Re(u*i) = 4/9(ua ia+ Ub ib + Uca ic + 1/2(Uaia + Ub ib + Ucic ) )

Re(u*i) = 4/9 x3/2 x(Uaia + Ub ib + Uc ic)

Re(u*i) = 2/3 (Uaia + Ub ib + Uc ic )

Durch Einsetzung der Definitionsgleichung der Leistung (1.1.6.1) erhalt man:
P = 3/2 Re(u*) (1.1.6.2)

1.1.7 HERLEITUNG DER MOMENTENGLEICHUNG
Fir die mechanisch abgegebene Leistung Pmech der Maschine gilt:

Pmech = Mel*Wmech (1.1.7.1)
Dabei ist mel das elektrisch erzeugte Drehmoment und wmech die mechanische Winkelge-
schwindigkeit des Rotors.
Die Herleitung der Gleichung fur den Momentanwert des Moments erfolgt im rotorfesten

System. Die kennzeichnenden Indices werden zur Vereinfachung weggelassen.
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Ausgangspunkt ist die Spannungsgleichung (1.1.5.8):
u=iR + dW/dt + jw¥

Es wird nun der Einfachheit halber der folgende Fall betrachtet:

dw/dt = 0, dW¥W/dt =0 (1.1.7.2)
Die Spannungsgleichung lautet dann:

u=iR+jw¥ (1.1.7.3)
Durch Multiplikation mit i* erhalt man:

ui* =Rixi* + jowWi* (1.1.7.4)

Bildet man den Realteil, so ergibt sich:
Re(ui*) =Ri? + w*Im(¥*i)
Nach Multiplikation dieser Gleichung mit dem Faktor 3/2 folgt:

3/2 Re(ui*) = 3/2 Ri? + 3/2 w Im(¥Y*i) (1.1.7.5)
Die Verlustleistung Pv im Stator ist gegeben durch:

Pv = R*(ia? + iv? + ic?) = 3/2 *R*i? (1.1.7.6)
Durch Einsetzen von (1.1.7.6) in (1.1.7.5) erhalt man:

P =Pv+3/2wIm(¥) (1.1.7.7)
Unter den gemachten Voraussetzungen gilt:

P = Pv + Pmech
Durch Vergleich mit Gleichung (1.1.7.7) folgt:

Pmech = 3/2 wim(¥Y*i) (1.1.7.8)
Unter Verwendung der Gleichung (1.1.7.1) erhalt man:

Mel = 3/2 *zp*Im(W*i) (1.1.7.9)

Die Ableitung der Drehmomentengleichung lafdt sich auch fur den allgemeinen Fall durch-
fuhren. Dann tritt in der Spannungsgleichung der Term d¥/dt hinzu.
Durch Multiplikation mit i*, Realteilbildung und Multiplikation mit 3/2 wird hieraus der Term:
3/2*Re(dW/dt x i*)
Die Leistungsbilanz lautet in diesem Falle:
P = Pv + Pmag + Pmech
Dabei ist Pmag = dWmag/dt die aus der Anderung der magnetischen Energie in der Ma-
schine resultierende Leistung.
Eine genauere Untersuchung liefert nun die Identitat
Pmag = 3/2*Re(dW¥/dt * i¥) (1.1.7.10)
Infolge dieser Tatsache erhalt man auch im Fall dw/dt # 0 das oben angegebene Resultat

fur den Momentanwert des Drehmoments.



-13-

Die Gleichung fir den Momentanwert des Drehmoments wurde im rotorfesten Koordina-

tensystem abgeleitet.

Fihrt man nun eine Drehung des Koordinatensystems gemaR:x' = x e/ durch, so folgt:
Wk ' = Yrreldarjgid = Wy

Der Ausdruck W*«i bleibt also bei Drehungen des Koordinatensystems invariant.

Hieraus ergibt sich, daf} die Formel (1.1.7.9) fur den Momentanwert des Drehmoments in

jedem Koordinatensystem Gultigkeit besitzt.

1.2 LINEARISIERUNG DES MODELLS DER SYNCHRONMASCHINE
1.2.1 MASCHINENGLEICHUNGEN
Zunachst sollen an dieser Stelle die Formeln zusammengestellt werden, die das System

im rotorfesten d-g-System beschrieben:

u = ixR + dW/dt + jw¥ (1.2.1.1)
Ue = Rexi + dWe/dt (1.2.1.2)
P = 3/2 *Re(ui*) (1.2.1.3)
Mel = 3/2 *zp*Im(W*+i) (1.2.1.4)

Durch Aufspaltung der Spannungsgleichung (1.2.1.1) in Realteil und Imaginarteil folgt:
Ud = id "R + dWd/dt - wx¥q (1.2.1.5)
Ug = iq *R + dWo/dt + wxWq

1.2.2 LINEARER ANSATZ
Die Flusse ¥ und Ye sind im allgemeinen Falle nichtlineare Funktionen der Strome und
des Rotorwinkels o:
* * Y =W (i,ie,) (1.2.2.1)
We = We(i,ie, )
Die Nichtlinearitat bezuglich der Strome wird wesentlich verursacht durch das nichtlineare
Verhalten der verwendeten Magnetmaterialien.
Die Abhangigkeit des mit der Erregerwicklung verkniUpften Flusses vom Rotorwinkel ent-
steht durch Inhomogenitaten des Rotors und des Stators.
Es wird nun das rotorfeste d-g-System zugrunde gelegt.
In diesem Koordinatensystem konnen die nichtlinearen Funktionen W4, Wq und We lineari-
siert werden. Durch Linearisierung erhalt man die Beziehungen:
Wy = Lha * (id + ie ) Lot *id = Ld *id + Lhd *ie (1.2.2.2)
Wq = Lhg* iq + Lat *ig= Lq *iq (1.2.2.3)
We = Lnd * (id +ie) +Loe *ie = Le *ie*Lhd *id (1.2.2.4)
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Die hierin auftretenden mit L bezeichneten Groflen haben die Dimension von Induktivita-
ten. Sie kénnen als den einzelnen Wicklungssystemen zugeordnete konstante Induktivita-
ten betrachtet werden.

Die mit dem tiefgestellten Index h bezeichneten GroRen werden dabei als Hauptinduktivi-

taten bezeichnet, wahrend die mit dem tiefgestellten Index o bezeichneten GréRRen als

Streuinduktivititen bezeichnet werden.

Die Bestimmung der Werte der Induktivitaten kann auf verschiedene Weise erfolgen. Steht
die Konstruktion einer Maschine im Vordergrund, so wird man sie nach verschiedenen nu-
merischen Verfahren ausgehend vom vorgesehenen konstruktiven Aufbau und den ver-
wendeten Materialien bestimmen.

Handelt es sich um eine vergebene Maschine, so wird man sie den Herstellerangeben ent-
nehmen oder durch Messungen nach in der Literatur beschriebenen Verfahren bestim-
men.

Durch Einsetzen der fiir die Flisse abgeleiteten Beziehungen (1.2.2.2 bis 1.2.2.4) in die

Spannungsgleichungen (1.2.1.5) erhalt man das folgende Gleichungssystem:

Ua = Rxia + La *dia/dt + Lngx die/dt - wLq iq (1.2.2.6)
Uq = Rxig + Lq *diq / dt + Wx (Ld %ig + Lha *ie) A (1.2.2.7)
Ue = Re *ie. + Le *die/dt + Lng *dia/dt (1.2.2.8)

1.2.3 Die linearisierte Momentengleichung
Der FLuRzeiger ¥ ist nach (1.2.1.2 und 1.2.1.3) gegeben durch:

Y =W4 + jWq = Ld xig + Lhd *ie + j*Lq *iq
Setzt man dies in die Momentengleichung (1.2.1.4): mel = 3/2*zx*Im(W¥Y*xi) ein, so erhalt
man:

Mel = 3/2xZpx(Waxiq “ Waxid)

Mel = 3/2xZp*((Laxia +Lndxie)*iq - Lq *iq *id )

Mel = 3/2xZp* (Lhaxiexiq + (Ld - Lq) *ig *id) (1.2.3.1)
Das Moment mel kann nun in zwei Anteile zerlegt werden:

Mel = Mel ,vp + Mel reak

Dabei ist

Mel vp = 3/2xZp*Lhd *ie *iq (1.2.3.2)
das Vollpolmoment der Maschine und

Mel reak = 3/2%Zpx(Ld - Lq) *ig*id (1.2.3.3)

das Reaktionsmoment der Maschine.

Das Reaktionsmoment tritt bei gegebenem Vollpolmoment um so mehr in Erscheinung, je
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grofer |ig| ist. Angemerkt sei hier, dal® diese Tatsache bei einer nahezu symmetrischen
Maschine in Betriebsbereichen, in denen eine Vorsteuerung des Stromzeigers notwendig

ist, nachteilige Auswirkungen hat.

1.2.4 Gleichungen der Maschine mit Vollpoleigenschaften
Bei einer Maschine mit Vollpoleigenschaften gilt:
Lhd =Lhg=LhundLg“Lg=L

Unter Berucksichtigung dieser Tatsache vereinfachen sich die Spannungsgleichungen fur
den Stator zu:

ud = Rxig + Lxdia/dt + Ln xdie/dt - w*Lxiq (1.2.4.1)

Uq = Rxig + Lxdig/dt + wx(Lxid + Lhxie) (1.2.4.2)
Wahrend bei den die allgemeine Synchronmaschine beschreibenden Gleichungen
(1.2.2.6) und (1.2.2.7) eine vernlnftige Darstellung in komplexer Form nicht méglich ist,

kénnen die Gleichungen im hier betrachteten Fall wieder in komplexer Form dargestellt

werden:

u = Rxi + Lxdi/dt + jooxLi + Ln *die/dt +jwLn xie (1.2.4.3)
Die Spannungsgleichung fur den Feldkreis lautet:

Ue = Re *ie + Le xdie /dt + Ln xdis/dt (1.2.4.4)

Die Momentengleichung vereinfacht sich durch das Verschwinden des Reaktionsmoments
Zu:
Mel = 3/2 *Zp xLh *ie *iq (1.2.4.5)

1.2.5 DIE PERMANENTMAGNETISCH ERREGTE SYNCHRONMASCHINE

Bei der permanentmagnetisch erregten Synchronmaschine, die im Folgenden auch als
PM-Synchronmaschine bezeichnet wird, verliert die Spannungsgleichung (1.2.2.8) fir den
Feldkreis ihren Sinn, da sie keine Entsprechung in der Realitat besitzt.

An ihre Stelle kann die Beziehung:

ie = const (1.2.5.1)
treten.
Dadurch vereinfachen sich die Gleichungen (1.2.2.6) und (1.2.2.7) zu:
Ug *Rx*ig + La *dia/dt - wxLq *iq (1.2.5.2)
Uq = Rxiq + Lq *dig/dt + w*(Laxig + Ln d *ie ) (1.2.5.3)

Im Falle einer permanentmagnetisch erregten Synchronmaschine mit Vollpoleigenschaften
kann von der Gleichung (1.2.4.3) ausgegangen werden. Diese vereinfacht sich zu:
u = R* + L*di/dt + jw*L*i + jwLn *ie (1.2.5.4)
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1.2.6 Beriicksichtigung der Beeinflussung der Felder im Maschinenmodell
Unter Feldschwachung soll in diesem Abschnitt die Beeinflussung des Rotorfeldes durch
die Statorfelder verstanden werden. Diese erfolgt bei der permanentmagnetisch erregten
Synchronmaschine entsprechend der Steigung der B-H-Kennlinie.
Bei der Untersuchung des Einflusses der Feldschwachung gehen wir von einer Maschine
mit Vollpoleigenschaften aus.
Die Beziehung ie = const vernachlassigt den Einflul? der Feld-Schwachung, da hier unab-
hangig von Betrag und Richtung des Stromzeigers i der vom Rotor ausgehende Flul} stets
als konstant angenommen ist.
Die Berucksichtigung der Schwachbarkeit des Feldes durch die d- Komponente der Stator-
stroms kann durch folgenden linearisierten Ansatz berlcksichtigt werden:
I e = ie0 + K*id (1.2.6.1)
Dabei ist k eine Konstante, die abhangig von der Steigung der B- H-Kennlinie die
Schwachbarkeit des Feldes kennzeichnet.
Durch Einsetzen der Beziehung (1.2.6.1) in die Gleichungen (1.2.4.1) und (1.2.4.2) erhalt
man:
ud = R*ig + L*dig/dt + Ln *kxdia/dt - w*L*iq
Uq = R*iq + L*dig/dt + w*(L*ia + Ln*ieo + Ln*K*ia)
Hieraus folgt:
Ud = R¥ig + (L + Ln*k)*dia/dt - w*L*iq (1.2.6.2)
Uq = R¥ig + L*dig/dt + w*((L + Lh*K)*id¢ + Ln *ieo )

Definiert man nun die Induktivitaten:

La'=L+Ln*kundLq'=L (1.2.6.3)
, so folgt durch Einsetzen in die Gleichungen (1.2.6.2):
Ud = R¥id + Ld' *dig/dt - w*Lq"iq (1.2.6.4)

Uq = R¥iq + Lq' *dig/dt + w *(Ld" *ig + Lhxieo)
Durch Vergleich mit den Gleichungen (1.2.5.2) und (1.2.5.3) erkennt man, dal} bei Bertck-
sichtigung der Feldschwachung aus der Maschine mit Vollpoleigenschaften eine unsym-
metrische Maschine wird. Bei dieser Maschine hat die Ersatzinduktivitat L4’ einen
gegenuber der Induktivitat Lq ' = L erhdhten Wert.
Die geringe Steigung der B-H-Kennlinie der verwendeten Magnetmaterialien bedingt, dal}
die auf L = Lq' bezogene Differenz zwischen Lq' und Lq' einen betragsmaliig geringen Wert
hat. Es wird also i.A. zulassig sein, die Unsymmetrie der Maschine zu vernachlassigen

und die Maschine als Vollpolmaschine zu behandeln. Auch in der vorliegenden Arbeit wird
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die Schwachbarkeit der Felder der Permanentmagnete durch die Felder des Stators ver-

nachlassigt.

1.2.7 Systemgleichungen der PM-Synchronmaschine mit Vollpoleigenschaften
Fir die permanentmagnetisch erregte Synchronmaschine mit Vollpoleigenschaften gelten

im rotorfesten System die folgenden Gleichungen:

u = Rxi + Lxdi/dt + joxLxi + jwxLn *ie (1.2.7.1)

Mel = 3/2 *zp *xLh *ie *iq (1.2.7.2)

P = 3/2 xRe(uxi*) (1.2.7.3)
Der gedachte konstante Strom ie wird nun durch die EMK-Konstante kevk ersetzt:

KEMK = Lhxie (1.2.7.4)
Durch Einsetzen in die Systemgleichungen erhalt man:

u = Rxi + Lxdi/dt + juwxLxi + jwxkemk (1.2.7.5)

Mel = 3/2 *Zp *KeEMK*iq (1.2.7.6)

Der letzte Summand in Gleichung (1.2.7.5) wird auch als Polradspannung Up bezeichnet,

so dal} gilt:
Up = jwxkevk (1.2.7.7)
In Komponentenschreibweise lautet die Gleichung (1.2.7.5):
Ud = Rxig + Lxdig/dt - wxLxiq (1.2.7.8)
Uqg = Rxiq + Lxdig/dt + w*(L*id + kemk) (1.2.7.9)

Bild 1.2 zeigt das Strukturbild der permanentmagnetisch erregten Synchronmaschine mit

Vollpoleigenschaften im d-g-System.
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BILD 1.2 Strukturbild der permanentmagnetisch erregten Synchronmaschine im rotorfes-
ten System

Bei verschiedenen Autoren - siehe z.B. /8 ORLIK/ - findet sich die Spannungsgleichung
auch in der Darstellung im statorfesten System. Diese kann aus der Spannungsgleichung
im rotorfesten System durch Anwendung der Koordinatentransformation gewonnen wer-
den. Im statorfesten System lautet die Spannungsgleichung:

U = Rxi + Lxdi/dt + jwxkemkxel® (1.2.7.8)
Dabei ist ¢ der elektrische Rotorwinkel.
Die Momentengleichung nimmt im statorfesten System die folgende Gestalt an:

Mel = 3/2 *Zp xkemk *Im(ixe’?) (1.2.7.9)
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1.3 MASCHINENMODELLE IN MATRIZENDARSTELLUNG

1.3.1 HERLEITUNG DER MASCHINENGLEICHUNGEN

Verschiedentlich finden sich in der Literatur Maschinenmodelle, bei denen auf die Einfuh-
rung eines komplexen Raumzeigers verzichtet wird. Anstelle des komplexen Raumzeigers
tritt dann ein Vektor mit zwei Komponenten. Der Zusammenhang zwischen diesem Vektor
und den drei Stranggrof3en wird durch eine Transformationsmatrix hergestellt.

Diese Transformationsmatrix kann aus der komplexen Darstellung durch Aufspaltung in
Real- und Imaginarteil gewonnen werden. Seien wieder Xa , X0 und xc die den Strangen zu-
geordneten Grélen. Die durch Aufspaltung gewonnenen GroRen im Zwei-Achsen-System
seien mit Xa und xg bezeichnet.

Dann gilt:

X = Xa + jX (1.3.1.1)
Durch Anwendung der Definitionsgleichung (1.1.3.5) fir den Raumzeiger folgt:

Xa = 2/3 *(Xa - 1/2 *(Xp + Xc) )

Xa = 2/3 *Xa - 1/3 *(Xp + Xc ) (1.3.1.2)
und

Xg = 2/3 */3/2 *(xb - Xc )

+ xg = 1/3 *(Xb - Xc) (1.3.1.3)
Die Gleichungen (1.3.1.2) und (1.3.1.3) lassen sich unter Benutzung der Matrizenschreib-
weise wie folgt zusammenfassen:

( ’;g) =(2(/)3 1/1/3 _ 11//3 ) x <§E> (1.3.1.4)

V3 V3/  \xc

Zu xa und xg kann nun eine dritte Komponente xo hinzugeflgt werden. Die Matrix kann so
zu einer quadratischen Matrix A erweitert werden, dal® die Komponente xo unter der Be-
dingung ,

Xa + Xb + Xc =0 (1.3.1.5)
verschwindet. Damit dies gewahrleistet ist, missen alle Matrixelemente der dritten Zeile
den gleichen Wert besitzen. Wahit man diesen Wert zu v/2/3, so erhalt man:

Durch diese Wahl wird erreicht, dal® die Transformationsmatrix A in einem erweiterten
Sinne orthogonal wird. Hiermit ist gemeint, dal3 die Beziehung:

A xAT =k xE (1.3.1.7)
gilt, wobei k eine Konstante und E die Einheitsmatrix ist.

Bei der Wahl des Wertes flur die Elemente der dritten Zeile der Matrix (1.3.1.6) werden

auch andere Wege beschritten.
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Bei Gliltigkeit der Beziehung (1.3.1.7) erhalt man flr die inverse Matrix A :
Al =1/k AT A (1.3.1.8)
Im hier betrachteten Fall ist k = 2/3. (1.3.1.9)
Anstelle der in Gleichung (1.3.1.6) definierten Matrix A kann auch eine Matrix A' verwendet
werden, die definiert ist durch:
A'=a*A (1.3.1.10
,wobei a eine Konstante ist
Fir die inverse Matrix A gilt dann:
A1 =3/2 x1/a2 xAT = 3/2 x1/a xAT (1.3.1.11)
Die Matrix A' ist gemaR Definition genau dann orthogonal, wenn A" = AT ist.
Demgemal ist die durch Gleichung (1.3.1.10) definierte Matrix genau dann orthogonal,
wenn a =,/3/2 ist.
Dieser Sachverhalt ist in /13 WEH, S.65/ beschrieben.
Die zugehorige orthogonale Matrix lautet:
1 0 1/V2
A‘=\/3_/2* —05 1/2%3 1/4/2 (1.3.1.12)
05 —1/2xv3 1/V2
Samtliche bisher abgeleiteten komplexen Gleichungen kdnnen nun auch - nach Zerlegung
in Real- und Imaginarteil - in der Komponentendarstellung geschrieben werden.
So lautet z.B. die allgemeine komplexe Spannnungsgleichung (1.1.16) in Komponenten-
darstellung:
Ua= ia *R + dWo/dt (1.3.1.13)
ug = iz *R + dWe/dt
Aus der Leistungsgleichung (1.1.20) erhalt man durch Anwendung der Komponenten-
schreibweise:
P = 3/2 (Uaxia + upxig) (1.3.1.14)

1.3.2 Leistungsvariante und leistungsinvariante Transformationen
Die Transformation eines dreistrangigen Systems in ein zweistrangiges System kann nun
nie derart erfolgen, dall samtliche beim dreistrangigen System gultigen Gesetze auch
beim zweistrangigen System Gultigkeit besitzen.
Die durch Gleichung (1.3.1.4) beschriebene Transformation ist, wie die Leistungsgleichung
(1.3.1.14) zeigt, leistungvariant. Zur Korrektur muf3 hier der Faktor 3/2 benutzt werden.
Bei Verwendung der orthogonalen Transformation (1.3.1.12) gilt:

P = Ua *ia + Ub*ib + Ucxic = Us xiz = (A" 1%U2)" *A""xiz

Hieraus folgt:
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P = UsTxi3 = U2T*i2
Hierbei sind die Vektoren im dreistrangigen System durch den tiefgestellten Index 3 und
die Vektoren im zweistrangigen System durch den tiefgestellten Index 2 gekennzeichnet.
Die orthogonale Transformation ist also wegen der Orthogonalitat der verwendeten Matri-
zen eine leistungsinvariante Transformation.
Es wird nun im dreiphasigen System ein sinusformiger zeitlicher Verlauf der Stranggréfien
betrachtet gemaf:

Xa(t) = a xsin(wt)

xp(t) = a xsin(wt + 211/3) (1.3.2.1)

Xc(t) = a xsin(wt + 411/3)
Im zweiphasigen wird ein entsprechender Verlauf zugrunde gelegt:

Xa = axsin(wt)

Xs = axsin(wt + 11/2) (1.3.2.2)
Die durch Gleichung (1.3.1.4) beschriebene Transformation ist nun so beschaffen, dal} die
Amplituden im zweiphasigen und im dreiphasigen System gleich grof3 sind. Es gilt also
hier a = a’. Bei der orthogonalen Transformation (1.3.1.12) gilt hingegen: a' = \/3_/2 *a.
Diese Tatsache wird in /13 WEH/ auf Seite 65 erwahnt.
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2. MASCHINENGLEICHUNGEN IN BEZOGENEN GROREN

2.1 Bezogenes GroRensystem

Bei der Behandlung der Synchronmaschine werden in der Literatur haufig bezogene Gro-
Ren benutzt. Durch die EinfUhrung bezogener GréfRen sollen die Ergebnisse der Untersu-
chungen von den Eigenschaften einer bestimmten Maschine losgelost werden. Hierdurch
wird der Vergleich der Eigenschaften von Maschinen unterschiedlicher Grélie und Bauart
vereinfacht.

Bei der Einflhrung bezogener Grolken werden haufig die Nenndaten der Maschine als Be-
zugsgroflen benutzt. Derart wird z.B. in /l BUEHLER/ verfahren. Im hier betrachteten Fall
der Synchronmaschine als Servomotor existieren Nenndaten im herkdmmlichen Sinne
nicht. Die BezugsgroéfRen werden hier deshalb so gewahlt, dal? die Maschinengleichungen
eine maglichst einfache Form annehmen. Im Folgenden werden zunachst die Bezugsgro-
Ren definiert und anschlielend die Maschinengleichungen in bezogenen GroRen abgelei-
tet. Als Bezugsgroflen werden die folgenden Grof3en verwendet:

1. Die elektrische Zeitkonstante Tel

Te = L/R (2.1.1)
2. Die Winkelgeschwindigkeit wo
wo = R/L =1/Tel (2.1.2)

Bei der Winkelgeschwindigkeit wo herscht zwischen Spannung und Strom in der Maschine
eine Phasendifferenz von 45 Grad.

Deshalb wird sie auch als 45°-Winkelgeschwindigkeit bezeichnet.

3. Die Bezugsspannung Uo
Uo = KEMK* Wo (2.1.3)
Uo ist der Betrag der Spannung, die vom Rotor im Stator induziert wird, wenn die Ma-
schine mit der Winkelgeschwindigkeit wo betrieben wird.
4. Der Bezugsstrom lo
lo = Kemk/L = kemk*wo/(L*wo) (2.1.4)
lo ist der Betrag des Stroms, der bei der Winkelgeschwindigkeit w =« im Stator flief3t,
wenn die Maschine im Kurzschluf3betrieb betrieben wird. Fur den Betrag l45 des Stroms,
der bei w = wo im KurzschluRbetrieb flieRt, gilt:l4s = lo/v/2.
5. Die Bezugsimpedanz Zo :
Zo=R (2.1.5)
Zo ist die Impedanz eines Statorstranges bei w = 0. Flr den Betrag Z4s der Statorimpe-

danz bei w = wo gilt Z4s = Zo * V2.
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Aus den Groflen w, u, i., Z und t werden nun die entsprechenden bezogenen GroéfRen ge-
bildet. Die bezogenen GroéRen werden dabei durch Apostrophe von den ursprlinglichen

GrofRen unterschieden:

w' = w/wo= w *L/R (2.1.6)
u' = u/Uo (2.1.7)
i'=i/lo (2.1.8)
Z'=27/Z0 =R+ wL)/R=1+jw' (2.1.9)
t' = t/Tel (2.1.10)

2.2 Umrechnung der Maschinengleichungen in bezogene GroRen

Fir die permanentmagnetisch erregte Synchronmaschine sind in Kapitel 1 die folgenden

im rotorfesten System gultigen Gleichungen abgeleitet worden:

U = Rxj + Lxdi/dt + jwL*i + jwxkemk (2.2.1)
Mel = 3/2 *zp *kemkxiq (2.2.2)
J xdw/dt = mel - m| (2.2.3)

Dabei ist J das gemeinsame Tragheitsmoment von Rotor und Last und mi das Lastmo-
ment.
Die Definitionsgleichungen (2.1.6) bis (2.1.9) fir die bezogenen GréRen werden nun nach
den ursprunglichen Grofden aufgeldst und in die Gleichung (2.2.1) eingesetzt:

Uoxu'= Rxio %i' + Lxloxdi'/dt + jooxLxloxi' + jwoxw'*Kemk
Aus dieser Gleichung folgt nach Division durch uo unter Verwendung der Definitionen der

Bezugsgrolien die Gleichung:

u'=i'+ woxdi/dt + jw'si' + jw' (2.2.4)
Aus Gleichung (2.2.2) folgt:

Mel = 3/2 xzp xkemk*loxiq'= 3/2 *zp xkemk?/L *iq' (2.2.5)
Es wird nun die bezogene Momentenkonstante kmom‘ eingeflihrt:

kmom' = 3/2 * zp xkemk?/L (2.2.6)

Sie hat die Dimension des Drehmoments.
Hiermit folgt aus (2.2.5):

M el = Kmom' *iq' (2.2.7)
Die Gleichung (2.2.4) kann noch vereinfacht werden, indem anstelle der Zeit t die bezo-
gene Zeit t' benutzt wird. Hierzu ist in (2.2.4.) die Ableitung nach t durch die Ableitung nach
t' zu ersetzen. Fur die zeitliche Ableitung einer beliebigen Grofe x gilt:

dx/dt = dt'/dt xdx/dt' = 1/Te xdx/dt' (2.2.8)
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Unter Bertcksichtigung dieser Beziehung folgt aus (2.2.4) die Gleichung:

u' =i+ difdtt jo'xi' +j W' (2.2.9)
Bei Verwendung der bezogenen Zeit t' ist auch die Momentengleichung (2.2.3) zu transfor-
mieren. Aus Gleichung (2.2.3) erhalt man:

Jxwo *dw’/dt = mel - mi

J* wo/Tel *xdw'/dt' = mel - My

JITer? *dw'/dt = mel - my (2.2.10)
Das bezogene Tragheitsmoment J wird nun definiert durch:

J'= JITel (2.2.11)
Die Konstante J‘ hat wie bereits die Momentenkonstante kmom' die Dimension des Dreh-
moments.
Hiermit geht Gleichung (2.2.10) Uber in:

Jxdw'/dt’ = mel - m (2.2.12)
Die Gleichungen (2.2.9), (2.2.7) und (2.2.12) beschreiben das Verhalten des Systems in
bezogenen Grolien.
FUr die Leistung ergibt sich in bezogenen GroRen der folgende Ausdruck:
P = 3/2 xUoxlo xRe(u'xi")
P = 3/2 xkemk?*R/L? xRe(u'*i™*) (2.2.13)
Das Verhalten der permanentmagnetisch erregten Synchronmaschine wird bei der Dar-
stellung in nicht bezogenen Groflken durch eine Vielzahl von Parametern bestimmt.
Bei der Darstellung in bezogenen Grofien reichen einige wenige Parameter zur Beschrei-
bung des Verhaltens der Maschine aus.
Es sind dies die folgenden Parameter:
1. Die zur Verfugung stehende Spannung:
Umax’ = Umax/Uo (2.2.14)
Die zur Verfigung stehende Spannung wird bestimmt durch die verwendete Zwischen-
kreisspannung und begrenzt durch die Spannungsfestigkeit der Maschine.
2. Der zulassige Statorstrom:
imax’ = imax/To (2.2.15)
Der zulassige Strom imax wird bestimmt durch die aufgrund der ohmschen Verluste auftre-
tende Erwarmung der Maschine. Zu unterscheiden ist hier noch zwischen dem kurzzeitig
zulassigen Strom und dem langzeitig zulassigen Strom.
3. Die bezogene Momentenkonstante:
kmom' = 3/2 *zp *kemk?/L (2.2.16)
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Bei der Betrachtung des Gesamtsystems sind ferner noch das bezogene Tragheitsmo-
ment J‘ und die maximale Winkelgeschwindigkeit wmax, bis zu der der Motor betrieben wer-
den soll, von Bedeutung.

In den folgenden Kapiteln wird bei der Untersuchung des Systems stets dieses be-

zogene GroRensystem benutzt.

2.3 Zusammenstellung der Maschinengleichungen im rotorfesten Sys-

tem in bezogenen GroRen
Zur besseren Ubersicht sind hier die Gleichungen zusammengestellt, die das Verhalten

der Maschine bei Verwendung bezogener Grof3en beschreiben:

u' =i+ divdt+ jw'si +j w' (2.3.1)
M el = knom' i (2.3.2)
J'*dw'/dt' = mei - my (2.3.3)

Bild 2.1 zeigt das zu Gleichung (2.3.1) gehérende Spannungszeigerdiagramm. Die Apo-
strophe sind darin weggelassen. Bild 2.2 zeigt das Spannungszeigerdiagramm bei Vorlie-
gen des stationaren Zustands (di'/dt* = 0). Die strichlierte Linie stellt dabei bei
vorgegebenem i die Ortskurve des zugehdrigen Spannungspunkts in Abhangigkeit von w

dar.

e=iw

P

Uy

Bild 2.1 Spannungszeigerdiagramm in bezogenen Gré3en
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u
d
Bild 2.2 Spannungszeigerdiagramm fiir den stationdren Zustand in bezogenen Gréen

2.4 Maschinengleichungen im rotorfesten System in bezogenen GroRen
Aus der Spannungsgleichung (2.3.1) im rotorfesten System erhalt man durch Anwendung
der Transformation:
X's = X'xel® (2.4.1)

die Spannungsgleichung im statorfesten System. Dabei ist x eine vektorielle Grolze. Die
hochgestellten Indices s bzw. r bezeichnen die Grof3en im statorfesten bzw. im rotorfesten
System. @ = @(t) ist der Rotorwinkel.
Die Spannungsgleichung im statorfesten System lautet demnach:

u'= i+ di/dt' + jw'xel® (2.4.2)

3. DIE UBERTRAGUNGSMATRIX DER SYNCHRONMASCHINE
3.1 UBERTRAGUNGSMATRIX BEI KONSTANTER WINKELGESCHWINDIGKEIT
Es werden die in Abschnitt 2.3 zusammengefassten Gleichungen der permanentmagne-
tisch erregten Synchronmaschine mit Vollpoleigenschaften im d-q-System in bezogenen
Grolken zugrunde gelegt. Auf die Kennzeichnung der bezogenen GréfRen durch Apostro-
phe wird verzichtet.
Die Spannungsgleichung (2.3.1) im rotorfesten System:

u =i+ di/dt +jwi + jw
ist eine nichtlineare komplexe Differentialgleichung.
Mit der komplexen Variablen: a =1 + jw (3.1.1)
kann diese Gleichung auch in der Form:

u =di/dt +a*i + jw (3.1.2)
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dargestellt werden. Nach Durchflihrung einer Umformung wird hieraus die Gleichung:
u - jw = di/dt +a*i (3.1.3)
Aus der Form dieser Gleichung ist ersichtlich, dal} es sich um ein komplexes VZ1-Glied im
Sinne von NAUNIN (/14/, Blatt DynI3) handelt. Die Ubergangsfunktion des komplexen
VZ1-Gliedes ist - wie dort beschrieben - eine Spirale. Bei Voraussetzung konstanter Win-
kelgeschwindigkeit w wird aus der Spannungsgleichung 2.3.1 eine lineare Differentialglei-
chung. Bei konstanter Winkelgeschwindigkeit w kann also auf dieses Gleichungssystem
die Laplacetransformation angewendet werden und so eine Ubertragungsfunktion abgelei-
tet werden. Durch Anwendung der Laplacetransformation auf die Komponenten der DGL
(2.3.1) erhalt man:
Ud(S) = S¥id + id - W¥iq (3.1.4)
Uqg(S) = S¥iq + iqg+ wW¥id + W
Hieraus folgt durch Umformung:
ud(s) = (s+1)*id -w*iq (3.1.5)
Uqg(S) = (s+1)%ig + W¥id + w
In Matrixschreibweise lautet dieser Zusammenhang:
(ha) = (5" 3D () ©) (316)
Damit sich hier nun ein linearer Zusammenhang ergibt, mul® das Gleichungssystem wie

folgt umgeformt werden:

ud \_/s+1 o *<id>
<uq - w) - ( —w s+ 1) iq (3.1.7)
Anstelle von ug tritt also hier der Ausdruck uq-w = uq-up auf der linken Seite der Gleichung

auf. Durch Auflésung nach is und iq ergibt sich:

idy _ s+1 —w)f ud
(iq>'1/D Co st1) (uq—w) (3.1.8)
, wobei D = (s+1)? + w? ist.
Die in Gleichung (3.1.8) auftretende Ubertragungsmatrix wird nun mit A bezeichnet:

a=1p (> ) (3.1.9)

Die Ubertragungsmatrix A ist orthogonal.
Fir die Determinante der Ubertragungsmatrix erhalt man unter Berlicksichtigung der Tat-
sache, dal} der vor der Matrix stehende Faktor 1/D mit der Potenz zwei bertcksichtigt wer-
den muf3, den Wert:

det(A) = ((s*+1)? + w?)' = D" (3.1.10)
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Die Ubertragungsmatrix A wird bestimmt durch die beiden Ubertragungsfunktionen:
G1(s) = (s+1)/((s+1)? + w?) (3.1.11)
und
G2(s) = s/((s+1)? + w?) (3.1.12)

Fir diese beiden Ubertragungsfunktionen wurden mit einem Rechnerprogramm die Fre-
quenzkennlinien und die Ortskurven bei verschiedenen Werten von w berechnet.

Im Folgenden wird der Parameter w zur Unterscheidung von der Abszissenvariablen w =
2*n*f in den Frequenzkennlinien mit wr bezeichnet.

Die Bilder 3.1 bis 3.3 zeigen die Frequenzkennlinien fir wr=0,5, wr=1 Und wr =10 .

Die Resonanzstellen von Gi(s) liegen stets bei w = wr.
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Bild 3.1 Betragsfrequenzgéange der Funktionen Gi(jw) und Ga (jw) bei wr = 0,5
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Bild 3.2 Betragsfrequenzgénge der Funktionen Gi(jw) und G2 (jw) bei wr = 1
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Bild 3.3 Betragsfrequenzgénge der Funktionen Gi (jw) und Gz (jw) bei wr = 10

Auffallig ist die starke Auspragung der Resonanz beim Parameterwert wr = 10 .
Die Interpretation der Frequenzkennlinien ist nicht ganz einfach. Berlcksichtigt werden
muf} hier insbesondere, dal} bei ihrer Erstellung das rotorfeste System zugrunde gelegt

wurde.
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Grundsatzlich ist eine starke Dampfung der hdherfrequenten Anregungen festzustellen, da
das System aufgrund der in ihm enthaltenen Induktivitaten Tiefpalicharakter besitzt.
Betrachtet man die Funktion Gi(s), die die Ubertragung zwischen gleichartigen Komponen-
ten bestimmt, so wird erkennbar, dal} eine stationare sinusférmige Anregung einer Kom-
ponente dann besonders stark ubertragen wird, wenn ihre Frequenz in der Nahe der
Rotorfrequenz liegt.

Der Einsatz von Pulswechselrichtern bedingt unvermeidliche Spannungsoberwellen. Der
vom Pulswechselrichter im statorfesten System gegebene Spannungsverlauf ist zunachst
in das rotorfeste System umzurechnen. Bei den im rotorfesten System auftretenden Span-
nungsoberwellen ist nun insbesondere auf solche Frequenzanteile zu achten, die in den
Bereich der Rotorfrequenz fallen. Geht man davon aus, dal} die Pulswechselrichterfre-
quenz f, wesentlich hoher ist als die Rotorfrequenz , so sind solche storenden Anregungen
insbesondere dann zu erwarten, wenn die Pulswechselrichterfrequenz ein ganzes Vielfa-

ches der Rotorfrequenz ist.

3.2 LINEARISIERUNG DES MODELLS
Die im obigen Abschnitt durchgefuhrten Rechnungen erforderten die Annahme konstanter
Winkelgeschwindigkeit w.
Eine andere Mdglichkeit zur Linearisierung, die ohne diese Annahme auskommt, besteht
darin, die nichtlinearen Terme in einer neu zu definierenden Grole zu "verstecken". Hierzu
wird die Spannungsgleichung (2.3.1) wie folgt umgeformt:

U - jw*i-jw =i+ di/dt (3.2.1)
Far die linke Seite der Gleichung wird nun eine neue Variable eingefuhrt, die hier als

kompensierte Spannung ukomp bezeichnet wird:

Ukomp = U - jw™i — jw (3.2.2)
Unter Verwendung dieser Definition wird aus Gleichung (3.2.1):

Ukomp = | + di/dt (3.2.3)
Durch Ubergang zur Komponentenschreibweise erhalt man zwei nicht gekoppelte lineare
Differentialgleichungen:

Ukomp.d = id + dig/dt (3.2.4a)

Ukomp.q ™ iq + dig/dt (3.2.4b)
Jede dieser Spannungsgleichungen ist identisch mit der einfachsten Form der Spannungs-
gleichung der Gleichstrommaschine.
Dieser Ansatz kann den Ausgangspunkt fur die Entwicklung eines linearen Zustandsreg-
lers fur die permanentmagnetisch erregte Synchronmaschine bilden.
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4. Verhalten im stationaren Zustand
4.1 Stromzeigergebiete

4.1.1 Aligemeines

Das Verhalten der permanentmagnetisch erregten Synchronmaschine im stationaren Zu-

stand ist ausfuhrlich in /3 GROTSTOLLEN/ untersucht worden. Gegenuber der erwahnten

Untersuchung sind die hier erzielten Resultate Ubersichtlicher und einfacher, da hier das

bezogene Grolensystem verwendet wird.

Als stationarer Zustand wird im Folgenden ein Zustand bezeichnet, bei dem die Rotorwin-

kelgeschwindigkeit w konstant ist und

i(t) =i xeiwt (4.1.1.1)
gilt.

Der Weg des Strompunkts ist dann ein Kreis. Um den umstandlichen Ausdruck "Winkelge-

schwindigkeit" zu vermeiden, wird dieselbe in diesem Abschnitt auch einfach als Drehzahl

bezeichnet. Wegen des verwendeten Formelzeichens w sind Verwechselungen nicht zu
befirchten.

Es wird nun das Verhalten des Motors bei Vorliegen des stationaren Zustands untersucht.

Die Untersuchung erfolgt im rotorfesten System in bezogenen Grof3en. Auf die Anbringung

der Apostrophe, die bei der Herleitung der bezogenen GroéRRen zur Unterscheidung der be-

zogenen von den nicht bezogenen Gréfen dienten, wird hier verzichtet.

Ziel der Betrachtungen ist, die Drehmoment-Drehzahl-Charakteristik der permanentmag-

netisch erregten Synchronmaschine zu bestimmen sowie den Einfluld der Vorsteuerung zu

untersuchen.

Bei der Untersuchung des stationaren Falls ergeben sich nun die folgenden zwei Frage-

stellungen:

1. Bestimmung des maximalen und minimalen erzeugbaren Moments m in Abhangigkeit
von w und den Maschinenparametern. Die Lage des Stromzeigers ist dann durch die
Forderung nach Maximalitat des Moments bereits bestimmt. Diese Bestimmung der
Drehmoment-Drehzahl-Charakteristik wird in Abschnitt 4.2 durchgefuhrt.

2. Die Bestimmung der Lage des Stromzeigers bei vorgegebenem Moment mel im Sinne
einer verlustoptimalen Steuerung. Hierauf wird in Abschnitt 4.3 eingegangen.

Es sind dabei die Bereiche me>0 und me<0 und die Bereiche w>0 und w<0 zu untersu-

chen.

Man kann jedoch die Untersuchung beschranken auf entweder den Bereich me > 0 oder

den Bereich w>0. Hier wird der Bereich mei>0 untersucht fir den Drehzahlbereich -co < w



-32-

<+ o . Im Bereich w>0 stellt das Moment meie dabei ein Antriebsmoment dar, wahrend es
im Bereich w<0 als Bremsmoment wirkt.

Aus der Spannungsgleichung (2.2.9) folgt durch Wegfall der zeitlichen Ableitung die Span-
nungsgleichung fur den stationaren Zustand:

U=i+jwi+jw

u=(1+jw)*i+jw (4.1.1.2)
Der Summand jw ist die Polradspannung Up:
Up = jw (4.1.1.3)

Zu beachten ist hier, dal} die bezogene Winkelgeschwindigkeit w des Rotors auch nega-

tive Werte annehmen kann.

4.1.2 Der E-Kreis
Der Betrag von u ist im realen Fall begrenzt durch die Bemessung der Spannungsversor-
gung (hier der Zwischenkreisspannung), so dal} gilt:

|u] <= Un (4.1.2.1)
Der Wert Umax wird in jedem Fall begrenzt durch die Spannungsfestigkeit des Motors und
der Ubrigen Bauelemente.
Das durch (4.1.2.1) bestimmte kreisférmige Spannungszeiger-Gebiet wird gemaf Glei-
chung (4.1.1.4) auf ein kreisformiges Stromzeiger-Gebiet abgebildet, dessen GréfRe und
Lage von der Winkelgeschwindigkeit w abhangig ist.

Dieses Gebiet soll erreichbares Stromzeiger-Gebiet (E-Gebiet) genannt werden. Der

Rand des Gebiets soll als E-Kreis bezeichnet werden.

Der Mittelpunkt des E-Kreises ist durch ip gemaf Gleichung (4.1.1.6) gegeben.

Die Ortskurve von ip in Abhangigkeit von w ist ein Kreis mit dem Radius 1/2 und dem Mit-
telpunkt ips = -1/2.

Der Radius des E-Kreises ist gemaf (4.1.1.7) gegeben durch: Umax/ |1 +jw |

4.1.3 Der Z-Kreis

Der Betrag von i mul begrenzt werden, da bei zu grof3en Strémen:

1. die Entmagnetisierung der Permanentmagnete erfolgt und

2. die Motortemperatur das zulassige Mal Ubersteigt.

Dementsprechend muf} daflr gesorgt werden, daf die folgende Bedingung gewahrleistet
ist: [i| <7 inmax (4.1.3.1)

Das so bestimmte kreisformige Gebiet soll zuldssiges Stromzeiger-Gebiet (Z-Gebiet)

genannt werden.Der Rand des Gebiets soll als Z-Kreis bezeichnet werden.

Der Z-Kreis ist also gegeben durch:
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ia? + ig? = iBaX? (4.1.3.2)
Bei genauerer Betrachtung kann noch unterschieden werden zwischen dem kurzzeitig und

dem langzeitig zulassigen Gebiet.

4.1.4 DAS VERFUGBARE STROMZEIGER-GEBIET
Der Durchschnitt des erreichbaren und des zulassigen Gebiets soll als verfuigbares

Stromzeiqgerqgebiet (V-Gebiet) bezeichnet werden. Das verfluigbare Gebiet ist also stets

die Schnittmenge zweier Kreise in der komplexen Ebene.
Bei w=0 ist der E-Kreis ein Kreis um den Ursprung mit dem Radius Umax .
Bei vernunftiger Dimensionierung des Systems wird gelten:

Umax > Imax (4.1.4.1)
Diese Bedingung gewahrleistet, dal} die verfugbare Spannung so grof} ist, daf} zumindest
bei Rotorstillstand der zulassige Strom fliel3en kann.
Bei w = 0 ist dann das zulassige Stromzeigergebiet im erreichbaren Gebiet enthalten.
Die Gultigkeit der Ungleichung (4.1.4.1) wird im Weiteren vorausgesetzt, ohne dal} jeweils
explizit darauf hingewiesen wird.
Die Bilder 4.1 bis 4.3 zeigen die Lagen von E-Kreisen und Z- Kreisen bei drei verschiede-

nen Rotordrehzahlen.

4.2 DAS MAXIMAL ERZEUGBARE MOMENT
4:2.1 Definitionen

Als hochster Punkt einer (beschrankten) Menge in der komplexen Ebene werde der

Punkt mit dem groRten Imaginarteil bezeichnet. Offensichtlich wird das maximale Moment

erzeugt, wenn der Strompunkt i im hochsten Punkt des V-Gebiets liegt.

Es sind nun drei Falle denkbar:

1. Der hochste Punkt des Z-Kreises liegt innerhalb des E-Kreises. Dann erzeugt dieser
Punkt das maximale Moment.

2. Der hochste Punkt des E-Kreises liegt innerhalb des Z-Kreises. Dann erzeugt dieser
Punkt das maximale Moment.

3. Weder Fall 1 noch Fall 2 liegt vor. Dann wird das maximale Moment von einem der bei-
den Schnittpunkte von E-Kreis und Z- Kreis erzeugt.

Die unter 1. und 2. gemachten Aussagen ergeben sich unmittelbar aus der Tatsache, dal}

das V-Gebiet die Schnittmenge von E-Gebiet und Z-Gebiet ist.
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Die unter 3. gemachte Aussage ergibt sich aus der Kreisform der Gebiete und der Tatsa-
che, dal das hochste Punkt des V-Gebiets ein Randpunkt ist.
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Bild 4.1 Lage von E-Kreisen und Z-Kreis bei w = 1 pu
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Bild 4.2 Lage von E-Kreisen und Z-Kreis bei w = 3,5 pu
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Bild 4.3 Lage von E-Kreisen und Z-Kreis bei w = 7.
Der Drehzahlbereich, in dem Fall 1 gilt, soll als strombestimmter Bereich bezeichnet

werden, da die GroRRe imax das maximal erzeugbare Moment bestimmt. Grotstollen /3/ ver-

wendet hier den Begriff Grundstellbereich.

Dementsprechend wird der Drehzahlbereich, in dem Fall 2 gilt, als spannungsbestimm-

ter Bereich bezeichnet, da hier die GroRe Umax das maximal erzeugbare Moment be-

stimmt. Dieser Bereich wird von Grotstollen als oberer Feldschwachbereich bezeichnet.

Der Drehzahlbereich, in dem Fall 3 gilt, als stromspannungs-bestimmter Bereich be-

zeichnet. Grotstollen bezeichnet diesen Bereich als unteren Feldschwachbereich.

4.2.2 DARSTELLUNGEN DES E-KREISES
Eine Parameterdarstellung des E-Kreises ist gegeben durch:
Umax*el® = ix(1+jw) + jw (0<= @ <21) (4.2.2.1)
Mit i = id +jiq erhalt man:
Umax*€® = ig - Wiq + j(Wid +ig +W)
Durch Betragsbildung und Quadrieren folgt:
Umax? = (id-Wiq)? + (Wig+ig+w)? (4.2.2.1)
Umax® = (1+w?) *(id?+ig?) + 2w*(Wid+ig) + w? (4.2.2.2)
Obwohl der durch (4.2.2.2) gegebene Zusammenhang sehr einfach ist, gestaltet sich die
Bestimmung des Weges des E-Kreises in Abhangigkeit von w durch die komplexe Ebene
kompliziert, da sie auf Gleichungen 3. und 4. Grades fuhrt.
In den folgenden Abschnitten werden Beziehungen fur einige charakteristische Punkte des

E-Kreises abgeleitet.
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4.2.3 Schnittpunkte des E-Kreises mit der imaginaren Achse
Die Schnittpunkte des E-Kreises mit der imaginaren Achse erhalt man durch Einsetzen
von id = 0 in Gleichung (4.2.2.1):

Umax® = (W*igq)? + (W+ig)? (4.2.3.1)

Umax® = (W2+1)*ig? + 2W*ig +w?

ig? + 2W/(W?+1) *ig +(W?-Umax?) / (W?+1) =0

ig12= (- = ((W? - (W-Umax 2) *(W?+1))"2)/(w?+1)

ig12 = (W = (Umax®(w?+1) - w*)"2)/(w?+1) (4.2.3.2)
Da Gleichung (4.2.3.1) symmetrisch bezuglich w und iq ist, erhalt man die Auflésung von
Gleichung (4.2.3.1) nach w aus Gleichung (4.2.3.2) durch Vertauschen von iq und w:

w12 = -ig % (Umax®>(ig®+1) - ig*) V2 /(ig?+1) (4.2.3.3)
Ersetzt man in (4.2.3.3) iq durch imax, so erhalt man die Drehzahlen w-g<0 und wg>0, bei
denen der E-Kreis den Z-Kreis im hochsten Punkt schneidet:

Wg = (-imax + (Umax® *(imax® +1) - imax*) 12) /(imax?+1) (4.2.3.4)

W-g = ( -imax — (Umax?® *( imax 2 +1) - imax*))""? /(imax®+1)
Der strombestimmte Drehzahlbereich ist also der Bereich:

W-g<= W <=Wyg (4.2.3.5)

Die Werte w-g und wg werden als Grunddrehzahlen bezeichnet.

Im strombestimmten Drehzahlbereich ist das maximal erzeugbare Moment drehzahlunab-
hangig gegeben durch:

Mel = 3/2 *Zp *Kmom' *imax (4.2.3.6)
Dieses Moment wird durch den Stromzeiger i = j*imax erzeugt. Eine Vorsteuerung des
Stromzeigers ist in diesem Bereich also nicht erforderlich.

Als natiirliche Leerlaufdrehzahl winat soll die grof3te Drehzahl bezeichnet werden, bei

der die Maschine stromlos betrieben werden kann.
Diese Bezeichnung ist aus /3 GROTSTOLLEN/ tbernommen.
Man erhalt sie, indem man in Gleichung (4.2.3.1) iq =0 setzt:
Wenat = Umax (4.2.3.7)
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4.2.4 3 Schnittpunkte des E-Kreises mit der reellen Achse
Die Schnittpunkte des E-Kreises mit der reellen Achse erhalt man durch Einsetzen von
ig=01in (4.2.2.1):

Umax? = ig? + (W(w+id))?

Umax?® = (1+W?)*ia? + 2w3 iq +w* (4.2.4.1)
Auflésung dieser Gleichung nach iq ergibt:

(W2+1)*ig? + 2w8 id + W* -Umax? = 0

la12= (w3 = (W - (W* -Umax 2) x(w? +1) 2)/(w?+1)

lg12 = (w3 £ (Umax®*(W3+1) - w*) V2/(w?+1) (4.2.4.2)
Durch Betrachtung der Diskriminante in Gleichung (4.2.4.2) erhalt man als Bedingung fur
die Existenz der Schnittpunkte i1z :

Umax? > w(w?+) (4.2.4.3)
Der E-Kreis berlhrt die reelle Achse bei der Drehzahl webq. Ist |w| > wbd, SO schneidet der
E-Kreis die reelle Achse nicht.

Als maximale Leerlaufdrehzahl wLmax soll die Drehzahl bezeichnet werden, bis zu der

die Maschine im Leerlauf (iq =0) betrieben werden kann. (a = \/3_/2)
Es qilt also:
WLmax <= Whd (4.2.4.5)
ig12 = (a £ ( w? *(imax?® *(1+w?) -a2))%% /(1+w?) (4.2.5.6)
Dies sind die g-Komponenten der Schnittpunkte von Z-Kreis und E-Kreis.
Die zugehdrigen d-Komponenten erhalt durch Verwendung der Beziehung (4.2.5.4):
ig = aw - Wid
i = a2w - 2awwid + W3id?
Durch Einsetzen der Beziehung ig? = imax? - id? folgt:
imax? - id® = @%W - 2awid + w?id?
(1+w?)*id? - 2awid + a’w - imax®> = 0
id12 =(aw = (@2w? + (imax 2 -aw) *(1+w? ) ) %% /(1+w?)
id 12 =(aW £ imax® *(1+w?) - a2) /(1+w?) (4.2.5.7)
Die hier berechneten Schnittpunkte von E-Kreis und Z-Kreis liefern im strom-spannungs-
bestimmten Drehzahlbereich das grofite bzw. kleinste erzeugbare Moment. Sowohl Strom

als auch Spannung besitzen hier den maximal zulassigen Wert.
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4.2.6 Der hochste Punkt des E-Kreises

Im spannungsbestimmten Bereich wird das maximal erzeugbare Moment vom hochsten
Punkt des E-Kreises bestimmt. Der Ubergang vom strém-spannungsbestimmten Bereich
zum spannungsbestimmten Bereich erfolgt, wenn der hochste Punkt des E-Kreises auf
dem Z-Kreis liegt. Es soll deshalb die Abhangigkeit des hochsten Punktes des E-Kreises
von der Winkelgeschwindigkeit w untersucht werden.

Der hochste Punkt in des E-Kreises ist gegeben durch:

ih = jumax/(1+02)05 - jw/(1+jw)

ih = (-w? + j(Umax* (1+w?) %5 - w))/(1+w?) (4.2.6.1)
Die Komponenten von in sind also:

ihd = -w?/(1+w?) (4.2.6.2)

ihg = (Umax*/(1+w?) %% - w )/(1+w?) (4.2.6.3)

Die Komponente inqg kann nun als Funktion von ind dargestellt werden. Dazu wird (4.2.6.2)

nach w? aufgelost:

W? = -ind/(ihd + 1) (4.2.6.4)
Nach Einsetzen in (4.2.6.3) und Umformen erhalt man unter der Voraussetzung w>0 :
ihg = (Umax*-\/—th) /\/ihd +1 (4.2.6.5)

In (4.2.6.5) durchlauft ina den Bereich -1<= ina <= 0.
Es folgt nun, daR inq nur im Fall umax<1 negative Werte annehmen kann.
Ferner folgt, dal ing im Fall umax>1 monoton abnimmt.
Es qilt nun:
ih? = ihg? + ihg?

Mit x =v/—ihd folgt aus (4.2.6.2) und (4.2.6.3) :

ih? = ihd® + (Umax-X)? *(1-X?)

ih?2 = x* + (Umax? — 2Umax*X + X2 ) *(1~x?)

ih? = Umax? - 2Umax*X + X2~ Umax?*X2 + 2Umax*x3

ih? = 2*Umax*x? - (']-Umaxz)*X2 2Umax*X + Umax? (4.2.6.6)
Das Betragsquadrat von in ist gemaf Gleichung (4.2.6.1) gegeben durch:
ih2 = (W4 + (Umax* VI + @2 - w)?) (1+w?)? (4.2.6.7)

Der spannungsbestimmte Drehzahlbereich liegt nun genau dann vor, wenn in <= imax ist.
Ersetzt man in (4.2.6.7) in durch imax, S0 erhalt man:
imax®-Umax? + (imax2—1 )*(.02 = 2Umax *W/ V1 + w? (4.2.6.8)

Mit den Abkurzungen: a = imax?-Umax?, b = imax’~1_und X = w?

erhalt man durch Quadrieren aus (4.2.6.8):
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b2x3 + b*(b+2a)*x2 + (a2 + 2ab - 4umax®)*x + a2 =0 4.2.6.9
Dies ist eine kubische Gleichung in x=w?.
Sie hat bei sinnvoller Parameterkombination (imax , Umax) genau eine reelle Losung. Diese
Losung gibt die Winkelgeschwindigkeit an, bei der der Ubergang in den spannungsbe-

stimmten Bereich erfolgt.

4.2.7 DIE DREHMOMENT-DREHZAHL-CHARAKTERISTIK
Wird keine Vorsteuerung des Stromzeigers verwendet, d.h. ia =0 , so ist der Maximalwert
von iq bestimmt durch die Gleichung (4.2.3.2)

iqg = (-w +(Umax®*(W2+) -w*)°23)/(Ww?+1)
und die Gleichung iq = imax
Dabei ist jeweils der kleinere Wert zu verwenden. Die sich durch Gleichsetzung der beiden
Gleichungen ergebenden Drehzahlwerte sind identisch bei den Drehzahlen wg und w-g.
Wird momentmaximale Vorsteuerung des Stromzeigers verwendet, so ist der Maximalwert

von ig bestimmt durch die Werte:

ig1 = (a+ (W? *(imax® *(1+w?) - a2)%% ) /(1+w?) (Gl 4.2.5.6)
mit @ = (Umax? - imax? - (1-imax® ) *W?) / (2 w) (Gl 4.2.5.3)
und

o2 = (Umax **( 1+w2)05 - 0 )/(1+w?) (Gl 4.2.6.3)
und

ig3 = Imax

Welcher Wert zu wahlen ist, wird dabei durch den Drehzahlbereich bestimmt. Die Be-
reichsgrenzen sind dabei durch die Gleichungen (4.2.3.4) und (4.2.6.9) gegeben.

Die Bilder 4.4 bis 4.7 zeigen die die Maximalwerte von iq bei momentmaximaler Vorsteue-
rung des Stromzeigers fur verschiedene Wertekombinationen imax und umax in Abhangigkeit

von der Winkelgeschwindigkeit w .
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Bild 4.4 Igmax in Abhéngigkeit von w bei Imax=0,5 mit u=umax als Parameter
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Bild 4.6 igmax in Abh&ngigkeit von w bei imax = 0,5 mit u=umax als Parameter
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Bild 4.7 igmax in Abh&ngigkeit von w bei imax = 4 mit U=umax als Parameter
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4-3 VORSTEUERUNG DES STROMZEIGERS

4.3.1 DEFINITIONEN

Ist ein Moment mel vorgegeben, das bei der vorhandenen Drehzahl w erzeugbar ist, so ist

von der zu mel gehdrenden Isomomentengerade nur der Teil nutzbar, der innerhalb des V-
Gebiets liegt. Es handelt sich hierbei um eine Strecke, die von den Randern des V-Gebiets
begrenzt wird.

Diese Strecke soll Isomomentenstrecke genannt werden.

Bild 4.8 zeigt die Lage zweier Isomomentenstrecken in der id¢-ig- Ebene.

Der Momentenfaktor fm wird nun definiert durch:

fm =|ig|/i (4.3.1.1)
Die Verlustleistung in der Maschine ist gegeben durch:
Pv = 3/2 *kemk? *R?/L2 *i? (4.3.1.2)
Liegt keine Einschrankung der Wahl von i durch Umax vor, so kann gewahlt werden:
i=j%iq (4.3.1.3)
Die in jedem Fall unvermeidbare Verlustleistung ist also gegeben durch:
Pv.min = 3/2 *kemk? *R?/L? *ig? (4.3.1.4)
Der Wert
fv = Pv/Pv.min (4.3.1.5)
soll als Verlustfaktor bezeichnet werden.
Es gilt nun fv = fm? (4.3.1.6)

Ein Strompunkt i auf einer Isomomentenstrecke wird verlustoptimal genannt, wenn fn ma-

ximal ist.
Der Winkel y = arg(i) - T1/2 wird als Steuerwinkel bezeichnet.
Es zeigt sich, dal} bei verlustoptimaler Steuerung des Stromzeigers i stets gilt: y >=0.

Isty >0, so liegt eine Vorsteuerung des Stromzeigers vor.

Bezuglich der Lage der Isomomentenstrecke sind zwei Falle zu unterscheiden:

1. Die Isomomentenstrecke schneidet die imaginare Achse. Dann ist der verlustoptimale
Punkt der Schnittpunkt. Das Gebiet in der ig-w-Ebene, in dem dieser Fall eintritt, soll als
Grundstellgebiet bezeichnet werden.

2. Die Isomomentenstrecke schneidet die imaginare Achse nicht. Dann liegt der Strom-
punkt bei verlustoptimaler Steuerung auf dem E-Kreis. Das Gebiet in der iq-w-Ebene, in

dem dieser Fall eintritt, soll als Feldschwéachqgebiet bezeichnet werden.

4.3.2 DAS GRUNDSTELLGEBIET
Der Momentenfaktor fm hat hier den Wert 1, der Steuerwinkel ist Null. Gleichung (4.2.3.2)



43-

liefert die Grenze des Grundstellgebiets:
W11(iq) = ( -iq +/~(Umax? *(ig?+1))-ig*)-2)/(ig?+1) (4.3.2.1)
Die Grenze des Grundstellgebiets kann auch durch Gleichung (4.2.3.2) beschrieben wer-
den:
Umax® >= (W*ig)? + (W+ig)? (4.3.2.2)
A

lq

max

Bild 4.8 Isomomentenstrecken in der Stromebene

4.3.3 DAS FELDSCHWACHGEBIET - VERLUSTOPTIMALE STEUERUNG

Das Feldschwachgebiet soll hier eingeteilt werden in das Feldschwachgebiet 1, bei dem
ein Randpunkt der Isomomentenstrecke auf dem Z-Kreis liegt, und das Feldschwachge-
biet 2, bei dem dies nicht der Fall ist.

Aus Bild 4.8 ist ersichtlich, wie diese beiden Situationen bei gleichem w flr verschiedene
Werte von iq auftreten.

Im Feldschwachgebeit gilt:

Umax® < (w*iq)z + (w+iq)z (4.3.3.1)

Bei verlustoptimaler Steuerung liegt der Strompunkt i. auf dem E- Kreis.

Daraus folgt, daf3 Gleichung (4.2.2.1) hier Gultigkeit besitzt:

Umax? = (id-Wig)2 + (wid + iq + w)z

Diese wird nach iq aufgelost:
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(1+w?2)*id? +2w? *id + (wiq)? + (ig + W)2 - Umax® =0 (4.3.3.2)
Es wird nun die Abkurzung:
a= (Wig)? * (ig + W)? - Umax? (4.3.3.3)
eingefuhrt.
Aus Gleichung (4.3.3.1) folgt, daf a<0 ist. Mit der Abklrzung a erhalt man:
(1+w?)*id? +2w?*ias +a =0 (4.3.3.4)

Flr id ergeben sich die beiden Losungen:

id12= (-w? £ (w*- a*(1+w?)?)%5/(1+w?)
Von den beiden Lésungen ist hier die betragsmallig kleinere zu wahlen, so dal} gilt:

id = (-w? + (W* - a*(1+w?)?) %5 /(1+w?) (4.3.3.5)
Im Feldschwachbereich ist stets id <0 . Daraus folgt, dal} die d-Komponente des
Statorfelds dem Rotorfeld entgegenwirkt, woraus der Name Feldschwachbetrieb resultiert.
Zusammenfassend |aRt sich hier sagen, daf ein Wachsen von umax nicht nur den Dreh-
zahlbereich erweitert, in dem ein gegebenes Moment erzeugt werden kann, sondern auch
aulBerhalb des Grundstellgebiets die Verlustleistung in der Maschine verringert.
Gleichung (4.3.3.5) liefert eine nichtlineare Steuerfunktion iqd = f(w,iq) zur verlustoptimalen
Steuerung des Stromzeigers. Die Berechnung von is nach Gleichung (4.3.3.5) erfordert ei-
nen sehr grolen Rechenaufwand und ist deshalb im realen System nicht méglich.
Die Implementierung der Steuerfunktion (4.3.3.5) in einem digitalen System kann nun
durch Tabellierung der Funktion an endlich vielen Rasterpunkten

(n*ig,Mm*wo) n=-N..N, m=-M...M
erfolgen.
Dabei stellen die Werte iqo und wo die Rastermale dar. Die Bestimmung von iq erfolgt nun
dadurch, daf3 im Bereich (n-0.5)*igo<=iq <(n+0,5)*iq0 , (M-0,5)*wo<=w <(M+0,5)*wo der ent-
sprechende tabellierte Wert verwendet wird.
Bei der Festlegung der Rastermalie ist Hohe der Spriinge von iq an den Bereichsgrenzen
zu berlcksichtigen, da das Auftreten von sehr grofen Spriingen einen negativen Einflufy
auf die Regelbarkeit des Systems hat.
Eine Verbesserung lafit sich hier erzielen, indem zwischen den Rasterpunkten zweidimen-
sional interpoliert wird. Auch bei diesem Verfahren treten noch Spriinge von iq bei infinite-
simalen Anderungen von iq und oder w auf. Diese sind jedoch wesentlich weniger
ausgepragt als bei Verwendung des Verfahrens ohne Interpolation. Denkbar ist auch ein
Verfahren, bei dem zur Verringerung des Rechenaufwands die Interpolation nur hinsicht-

lich einer Variablen vorgenommen wird.
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Eine weitere Mdglichkeit zur Realisierung einer Steuerfunktion besteht darin, die Steuer-
funktion (4.3.3.5) zu vereinfachen. Bei dieser Vereinfachung mul} die Steuerung mdglichst
so erfolgen, dal} stets der gesamte Momentenbereich zur Verfugung steht. Es gibt nun
zwei Vorsteuerarten, bei denen die Steuerung unabhangig vom zu erzeugenden Moment,
d.h. von iq ist.

a) Vorsteuerung mit momentenunabhangiger i--Komponente In diesem Falle gilt: id = ia(w)
Andert sich das durch die Regelung vorgegebene Sollmoment, so dndert sich bei Benut-
zung diese Vorsteuerungsart sowohl der Betrag als auch der Winkel des Stromzeigers.

b) Vorsteuerung mit momentenunabhangigem Vorsteuerwinkel

In diesem Falle gilt: @ = @(w).

Bei Anderung des Sollmoments &ndert sich hier nur der Betrag des Stromzeigers.

Der geometrische Ort ist in beiden Fallen eine Gerade. Diese Gerade soll hier als Steu-
ergerade bezeichnet werden.

Will man stets Uber das maximale Moment verfligen, so wird man die Steuergerade so le-
gen, dald der Strompunkt io , bei dem das maximal erzeugbare Moment erzeugt wird, auf
der Steuergerade liegt.

Hier ist in diesem Zusammenhang zu untersuchen, inwieweit bei Verwendung der Vor-
steuerarten auch kleine Momente bei gro3en Winkelgeschwindigkeiten erzeugbar sind.
Zu diesem Zweck wird die Steuerstrecke definiert als der Teil der Steuergeraden, der in-
nerhalb des verfugbaren Stromzeiger-Gebiets liegt.

Das Moment 0 ist nun offenbar genau dann erzeugbar, wenn die Steuerstrecke die ig-
Achse schneidet.

Bei Versteuerung mit momentenunabhangiger is--Komponente existiert der Schnittpunkt
der Steuerstrecke mit der is-Achse stets.

Bei Versteuerung mit momentenunabhangigem Vorsteuerwinkel ist dies nur fir Winkelge-
schwindigkeiten w<= winat der Fall.

Bild 4.9 zeigt die Steuerstrecken bei beiden beschriebenen Vorsteuerarten bei w<wl,nat.

Bild 4.10 zeigt die Steuerstrecken bei den beschriebenen Vorsteuerarten bei w > wlnat
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Bild 4.9 Steuerstrecken bei w < w,nat
1 Vorsteuerung mit momentenunabhéngigem iq
2 Vorsteuerung mit momentenunabhéngigem Winkel

A

£
S

Bild 4.10 Steuerstrecken bei w > wtnat
1 Vorsteuerung mit momentenunabh&ngigem iq
2 Vorsteuerung mit momentenunabhéngigem Winkel
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Eine Moglichkeit zur momentenunabhangigen Bestimmung von iq im Feldschwachbereich
besteht darin, die Gleichung (4.3.3.5 ) zu vereinfachen zu:
id = -w/(1+w?) A (4.3.3.6)
Bei dieser Steuerungsart hat i« den Wert der d-Komponente des Mittelpunktes des E-Krei-
ses. Da bei dieser Art der Vorsteuerung der Betrag des Spannungszeigers den unter den
gegebenen Umstanden kleinstmoglichen Wert besitzt, kann hier auch von spannungsmi-
nimaler Vorsteuerung gesprochen werden.
Da man die Vorsteuerung gemaf (4.3.3.6) nur im Feldschwachgebiet anwenden wird, be-
steht hier der Nachteil, dal® bei Erreichen der Drehzahlen wg und w-g ein Spung von iq er-
folgt.
Eine andere Vereinfachungsmoglichkeit ist von B. ORLIK /9/ angegeben worden.
Orlik macht den einfachen Ansatz:
id = Wg /w - 1 bei w>wg und (4.3.3.7)
id = W-g/w - 1 bei w<w-g

Diese Art der Steuerung des Stromzeigers soll hier als Vorsteuerung nach Orlik bezeich-

net werden. Die Begrundung fur diesen Ansatz ergibt sich aus der Betrachtung der Span-
nungsgleichung.
Die Spannungsgleichung flr den stationaren Fall lautet in Komponentendarstellung :

Ud = id - W¥ig

Ug=iqg+ wid + w
Es wird nun der Term x(w) = w*is + w betrachtet. Dieser wird im Feldschwachbereich kon-
stant auf dem Wert gehalten, den er bei verlustoptimaler Steuerung beim Eintritt in den
Feldschwachbereich hatte.
Dies liefert fur w>wyg die ldentitat x(w) = x(wg) = Wg
Unter Verwendung dieses Wertes erhalt man:

wW*id + W = Wy
Durch Auflésung nach iq folgt:

id = wg/w - 1
Die Bilder 4.11 und 4.12 zeigen die Lage des Strompunkts bei den hier beschriebenen
Vorsteuerungsarten in unterschiedlichen Drehzahlbereichen. Die Art der Vorsteuerung be-
einfluldt den Verlauf der Drehmoment- Drehzahl-Charakteristik.
Die Bilder 4.13 bis 4.16 zeigen den Maximalwert von iq in Abhangigkeit von w bei ver-

schiedenen Vorsteuerungsarten.
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Bild 4.11 Lage des Strompunkts bei verschiedenen Vorsteuerarten
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Bild 4.12 Lage des Strompunkts bei verschiedenen Vorsteuerarten

1 2 3 4 5 B W

Bild 4.13 igmax in Abhdngigkeit von w bei verschiedenen Vorsteuerarten (Umax=2,Imax = 0,5)
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung



-49-

Bild 4.14 iqgmax in Abhéngigkeit von w bei verschiedenen Vorsteuerarten (Umnax=4,Imax= 0,5)
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung

i A

Bild 4.15 igmax in Abhdngigkeit von w bei verschiedenen Vorsteuerarten (Umax=2,Imax=1)
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung

e 1 3 ) 3 z g e

Bild 4.16 igmax in Abhéngigkeit von w bei verschiedenen Vorsteuerarten (Umax =4, Imax=1)
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung
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5. Dynamisches Verhalten der Synchronmaschine
5.1 Beschreibung des dyn. Verhaltens im statorfesten System
Bei allen Betrachtungen dieses Kapitels wird eine konstante Winkelgeschwindigkeit w vo-
rausgesetzt. Diese Voraussetzung ist erforderlich, da das Differentialgleichungssystem,
das das Verhalten des Systems beschreibt, allgemein nicht I6sbar ist.
Die Annahme konstanter Winkelgeschwindigkeit ist zulassig, wenn kleine Zeitabschnitte
betrachtet werden und das Gesamttragheitsmoment von Rotor und Last so grof ist, dal}
die mechanische Zeitkonstante erheblich gréRer als die elektrische Zeitkonstante ist.
Die GroRRen in diesem Abschnitt sind bezogen auf ein statorfestes Koordinatensystem.
Wir gehen von der Spannungsgleichung (2.4.2) aus.
Die Losung dieser Differentialgleichung ist bei konstanter Winkelgeschwindigkeit w gege-
ben durch:

i(t) =i(0)* et + jw /(1+jw) * (et — e Ivt)*el® + g fot e’ *u(t) dr (5.1.1)
Die Summanden der rechten Seite dieser Gleichung stellen in der Reihenfolge ihres Auf-
tretens den Einflul} des Anfangsstroms i(0), den Einflu® der Rotordrehung und den Einfluf
des Spannungszeigers u(t) auf den Stromzeiger i(t) dar.
Im Folgenden soll durch Einfihrung neuer Gréflien versucht werden, eine Ubersichtlichere
Form der Gleichung (5.1.1) zu erhalten.
Es erweist sich nun als gunstig, anstelle des realen Stromzeigers i(t) einen Ersatzstrom-
zeiger i (t) zu betrachten. Dieser wird so bestimmt, dal} der Einful® der Rotordrehung ver-
schwindet.

Der Stromzeiger ip(t) = -jw/(1+jw)*)*el@ **) wird im Folgenden als Polradstromzeiger be-

zeichnet. Der Polradstromzeiger ist somit bei Betrieb der Maschine mit kurzgeschlossenen
Klemmen und Vorliegen des stationaren Zustands mit dem Stromzeiger i(t) identisch. Der
Ersatzstromzeiger

ir(t) = i(t) - In(t) (5.1.3)
wird im folgenden als reduzierter Stromzeiger bezeichnet.

Mit Gleichung (5.1.1) erhalt man dann:

ir(t) = i(0) *et + e[ €T *u(T)dT (5.1.4)
Ist der Spannungszeiger u im Intervall [0,t] konstant, so vereinfacht sich Gleichung (5.1.4)
Zu: ir(t) = ir(0)*et + u*(1 -e) (5.1.5)
Der resultierende Spannungsvektor Ur im Intervall [0,t] wird nun definiert durch die Glei-

chung:

u(1-ef)=et [ e™u(T)dT (5.1.6)
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5.2 Beschreibung des dynamischen Verhaltens im rotorfesten System

Die Beschreibung erfolgt wieder unter der Annahme konstanter Winkelgeschwindigkeit.
Die GroRRen im rotorfesten System sind hier durch den hochgestellten Index r gekenn-
zeichnet.
Der Ubergang zu GroRen im rotorfesten System erfolgt durch die Transformation:

i(t) = if(t) *e®Hiuwt
Durch Anwendung dieser Transformation auf die Gleichungen vorigen Abschnitts erhalt

man die Gleichungen im rotorfesten System:

ip" (1) = -jw/(1+jw) (5.2.1)
if(t) =ir(0)"et* i) + e~ (triwtys [1 g ioT.yi(r) dr (5.2.2)
Es qilt hier wieder:

i"(t)=ir (t)+ip'(t) (5.2.3)

Das erzeugte Moment m ist gegeben durch:
Mel = 3/2 * zp * Kmom*Im(i")
Es kann zerlegt werden in die Momente:
Mp = 3/2 * Zp * Kmom * IM(ip") (5.2.4)
mr = 3/2 * zp * Kmom * Im(ir")
Das Moment mp ist dabei ein Bremsmoment, dessen Grofde nur von der Drehzahl w ab-
hangt. Bei der Drehzahl w=1 erreicht mp den betragsmalig gréliten Wert.
Der resultierende Spannungsvektor u'r wird wieder so definiert, dal} bei konstantem

u"(t) = ur gilt: u" = u'r. Ausgehend von

uR*(etivt- 1)/(1+jw) = fot et *yr(T) dT (5.2.5)
erhalt man:

u'R = (1+jw)/(eot- 1) [7 eTwT *ur (T) dT (5.2.6)
Mit u'r erhalt (5.2.2) die folgende Form:

i"(t) = i(0) *e- W) + e-(tHwh* yrg * (eltwh -1)/(1+jw) (5.2.7)
Der Strommittelwertzeiger I\ ist gegeben durch:

IiF =t *(uR/(1+jw)- i(0) ) * e tivt /(1+jw) + uR/(1+jw) (5.2.8)

5.3 Dynamisches Verhalten bei statorfestem Spannungszeiger
Im statorfesten System gilt bei konstantem Spannungszeiger:
it) = in(0) * et + etu*[ eTdT
ir(t) = ir(0)*et + eu*(et-1)
ir(t) = ir(0)*et + u*(1-e") (5.3.1)
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Der Strompunkt ir (t) bewegt sich also auf der durch die Strompunkte i-(0) und u bestimm-
ten Strecke. Dabei bewegt er sich ausgehend von ir(0) auf u zu.
Die zeitliche Ableitung von ir(t) ist in diesem Falle gegeben durch:

di(t)/ dt = (u - i0) ) *e' (5.3.2)
Die Geschwindigkeit der Bewegung des Strompunkts ist also zur Zeit t=0 am gréf3ten und
nimmt exponentiell ab.
Zur Zeit t=0 ist die Geschwindigkeit |u - ir(0)l . Sie wird also bestimmt durch den Abstand
des Punkts u vom Punkt ir(0) .
Durch Ubertragung ins rotorfeste Koordinatensystem erhalt man:

u'(t) = u*ed (@*wh = yr(Q)* eiwt (5.3.3)
Daraus folgt nun:

i"(t) = i(0)*ed (@*wh+ g (@*wh) * yr(Q) * [ Ot e’dT

i(t) = i"(0)*ed (O*wi4 g (@¥et) * yr(Q) *(et-1) (5.3.4)

5.4 Dynamisches Verhalten bei rotorfestem Spannungszeiger

Im Folgenden wird von einem Spannungszeiger ausgegangen, der synchron mit dem Ro-
tor umlauft. Dann gilt: u'(t) = u" . Aus (5.2.7) folgt dann:

if(t) = i(0) *e (iol + e (+jut) yr [7 T+iwT) ¢T

ii"(t) = i (0) *e~ t+iwh) + g (t+]jwh) yr (gt*iwh-1)/(1+ jw)

i (t) =i"(0) + (u/(1+jw) - i(0)) *(1- e(t+iwD) (5.4.1)
Far t -> 00 folgt:

ir " (t) -=> u/(1+jw) (5.4.2)
Isti"(0) = u"/(1+jw) , so liegt bereits der stationare Zustand vor.

Isti"(0) u/(1+jw), so bewegt sich der Strompunkt ir" (t) ausgehend von i"(0) auf einer Spi-
rale, die gegen den Punkt u'/(1+jw) konvergiert.
Durch Subtraktion des Endwerts u'/(1 + jw) von Gleichung (5.4.1) erhalt man:

i"(t) - u/(1+jw) = i(0) - u/(1+jw) et vy (5.4.3)

Aus dieser Form der Darstellung wird deutlich, daf bei der Spirale die Winkelgeschwindig-

keit des Umlaufs -w und die relative Amplitudenabnahme pro Umlauf

1-e2mw st

Bei VergroRerung von w nimmt also die relative Amplitudenabnahme pro Umlauf ab.

Der Betrag der Abweichung vom Endwert ist jedoch unabhangig von w gegeben durch:
lir'(t) - u/(1 + jw)| = [i(0) - (U™ /(1 + jw) | *e (5.4.4)

Bild 5.1 zeigt die durch Gleichung (5.4.1) beschriebene Ubergangsfunktion des komplexen



VZ1-Gliedes.
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Bild 5.1 Ubergangsfunktion des komplexen VZI-Gliedes
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5.5 UBERGANGSVERHALTEN

Das Ubergangsverhalten wird im rotorfesten System betrachtet. Unter Ubergangsverhal-
ten soll hier das Verhalten wahrend des Ubergangs von einem Stromzeiger i1 zu einem
Zeiger i"2 verstanden werden. Solche Ubergénge sind z.B. notwendig, wenn das Moment
mr von einem Wert mr1 ausgehend den Wert mr2 annehmen soll. Ziel der Betrachtungen ist
es, Spannungsverlaufe u'(t) zu finden, bei denen der Ubergang in moglichst kurzer Zeit er-
folgt.
1. Eine Mdglichkeit, den Ubergang zu erzielen, ist es, die Spannung u'(t) = u'2 = ir2/(1+jw)
zu wahlen. Der Stromverlauf ist dann durch Gleichung (5.4.1) gegeben. Nachteilig ist hier
die Tatsache, daf’ der Vektor ir"2 erst nach unendlich langer Zeit erreicht wird und dal} das
Moment mrwahrend des Ubergangs starke Schwankungen aufweist.
2. Eine Verbesserung kann hier erzielt werden, indem der Spannungsvektor u' (t) = u" so
gewahlt wird, dal ir2 auf dem Weg des Strompunkts ir'(t) liegt. Sobald dann ir'(t) den Wert
ir'2 erreicht hat, wird der zu ir "2 gehdrige Spannungsvektor u™2 =ir2/(1+jw) geschaltet,
wodurch der stationare Zustand erreicht ist.
Mit (5.2.7) erhalt man:

i = i et uf(14jw) * (1-e 19D

u’/(1 + jw) = (i - i et ) [ (1-gtriw)

u/(1 + jw) = i (i - ir )/(1-e- Wt (5.5.1)
Die Zeitdauer t des Ubergangs bestimmt mafRgeblich den Betrag des Spannungszeiger u'.
Bei t->0 strebt Iu'| -> o0o. Die Zeitdauer t kann nun so gewahlt werden, dal} u" = Umax ist,
und damit den gréften realisierbaren Betrag hat.
Aus (5.5.1) folgt mit u" = Umaxei®:

............................... (5.5.2)
Diese Gleichung ist eine Bestimmungsgleichung fir t und ¢ .
3. Eine dritte Mdglichkeit besteht darin, wahrend des Ubergangs einen im statorfesten
System konstanten Spannungsvektor u zu wahlen.
Aus (5.3.4) erhalt man:

i? = " et il 4 et wlryr(0) * (e'-1)

u'(0) = (ir2*et*iwh - jr )/ (et-1) (5.5.3)
Hierbei ist t wieder die Zeitdauer des Ubergangs.
Setzt man u'(0) = umax€l® , so erhalt man:

(5.5.4)

Dies liefert eine Bestimmungsgleichung fur t und ¢.
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6. Speisung der Synchronmaschine durch einen Gleichspannungszwi-
schenkreis

6.1 Schaltung

Bild 6.1 zeigt das Ersatzschaltbild von Pulswechselrichter und Synchronmotor. Die perma-
nentmagnetisch erregte Synchronmaschine wird im vorliegenden Fall Gber drei steuerbare
Halbbricken aus einem Gleichspannungskreis gespeist. Da die Gleichspannung ihrerseits
durch Gleichrichtung und Glattung aus einem Dreiphasennetz gewonnen wird, wird der
Gleichspannungskreis als Gleichspannungszwischenkreis bezeichnet. Die drei Halbbru-
cken arbeiten als dreiphasiger Pulswechselrichter.

Als Schaltelemente werden MOS-FET's mit integrierter Freilaufdiode verwendet. Diese
Bauelemente zeichnen sich durch kurze Schaltzeiten und hohe Belastbarkeit aus. Gegen-
Uber alteren Schaltungen, bei denen Thyristoren oder GTO's verwendet werden, ergibt
sich durch die Verfugbarkeit von MOS-FET's entsprechender Leistung und Spannungsfes-
tigkeit eine Vereinfachung des Schaltungsaufbaus und eine Verbesserung des Schaltver-
haltens. Auch im Vergleich zu bipolaren Transistoren zeichnen sich die verwendeten
MOS-FET's durch gunstigere Eigenschaften aus.

Im folgenden werden die verwendeten Schaltelemente vereinfachend als ideale Schalter
betrachtet.

Ferner werden moégliche Schwankungen der Zwischenkreisspannung infolge ungenigen-
der Pufferung bei grol3er Strombelastung nicht berlcksichtigt. Auch Probleme, die bei der
Energieaufnahme durch den Zwischenkreis bei Bremsvorgangen entstehen, werden ver-
nachlassigt. Die Zwischenkreisspannung wird also als konstant angenommen. Eine Be-

schreibung der Schaltzustande und Spannungszeiger befindet sich in /3 ORLIK/.
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Bild 6.1 Schaltbild des Synchronmotors mit Gleichspannungszwischenkreis
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Bild 6.2 Spannungszeigersechseck mit Inkreis und Umkreis
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6.2 SCHALTZUSTANDE UND SPANNUNGSZEIGER

Bei drei Halbbriicken mit jeweils zwei Schaltzustanden gibt es 8 Schaltzustande. Zwei die-
ser acht Schaltzustande bewirken Kurzschlufd der Strange, so dald beziglich der Wirkung
auf den Motor 7 verschiedene Schaltzustande vorhanden sind.

Das Potential Vo des Maschinensternpunkts ergibt sich zu jedem Zeitpunkt als arithmeti-
scher Mittelwert der Klemmenpotentiale V1, V2 und V3.

Somit kdnnen aus gegebenen Klemmenpotentialen die Strangspannungen U1, U2 und Us
bestimmt werden.

Tabelle 6.1 zeigt die bei den acht moglichen Schaltzustanden auf- tretenden Potentiale

und Strangspannungen.

Zust. V1 V2 Vs Vo U1 U2 Us
0 0 0 0 0 0 0 0
1 Uz 0 0 1/3 Uzk 2/3 Uz -1/3 Uz -1/3 Uz
2 Uzk Uzk 0 2/3 Uz 1/3 Uz 1/3 Uz -2/3 Uz
3 0 Uzk 0 1/3 Uz -1/3 Uz 2/3 Uz -1/3 Uz
4 0 Uz Uz 2/3 Uz -2/3 Uz 1/3 Uz 1/3 Uz
5 0 0 Uzk 1/3 Uz -1/3 Uz -1/3 Uz 2/3 Uz
6 Uzk 0 Uzk 2/3 Uz 1/3 Uz -2/3 Uz 1/3 Uz
7 Uzk Uz Uzk Uzk 0 0 0

Tabelle 6.1: Potentiale und Strangspannungen bei den méglichen 8 Schaltzustdnden
Aus den Strangspannungen konnen gemal Gleichung (1.1.3.5) die komplexen Span-
nungszeiger gebildet werden.

Die den Schaltzustanden 1 bis 6 zugeordneten Spannungszeiger haben einen einheitli-
chen Betrag. Dieser hat - wie hier am Beispiel des dem Schaltzustand 1 zugeordneten
Spannungszeigers gezeigt wird - den Betrag:

|U| =2/3*| U1 +a*Uz+a?*Us |,
wobei a = exp(j*2w/3) = -1/2 + j*I/2 ist.
Es folgt nun:

|U| =2/3* 2/3*Uzk- 1/3*Uzk * (a + a?) |

|U| =2/9*Uz * | 2- (a + a2 )|

|U| =2/9"Uzk * 3 =2/3 Uz (6.2.1)
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Tabelle 6.2 zeigt Betrag, Winkel und Komponenten der den Schaltzustanden zugeordne-

ten Spannungszeiger im statorfesten System.

Zust. n |Un| | arg (Un) Ux| Uy
0 0 - 0 0
1 2/3 Uz 0° 2/3 Uz 0
2 2/3 Uz 60° 1/3 Uz 13 Uz
3 2/3 Uz 120° -1/3 Uz 1/3 Uz
4 2/3 Uz 180° -2/3 Uz 0
5 2/3 Uz 240° 1/3Uz  -14/3 Ux
6 2/3 Uz 300° 113Uz -11/3 Uz
7 0 - 0 0

Tabelle 6.2: Betrag, Winkel und Spannungszeiger bei den méglichen Schaltzusténden
Aus Tabelle 6.2 ist ersichtlich, daf3 die Spannungszeiger Ui bis Ue ein regelmaRiges
Sechseck aufspannen. Bild 6.2 zeigt dieses Spannungszeigersechseck mit eingezeichne-
tem Inkreis und Umkreis.

Es wird nun ein Zeitabschnitt T betrachtet. Innerhalb dieses Zeitabschnitts wird eine Folge
un von Spannungszeigern geschaltet, die jeweils wahrend der Zeitdauer tn anliegen.
Der resultierende Spannungszeiger ur wird nun definiert durch:

u=1T*) Tn*Un (6.2.2)
Der so definierte resultierende Spannungszeiger kann die Spannungszeigerfolge bezlg-

lich der Wirkung auf den Stromzeiger ersetzen, wenn der betrachtete Zeitabschnitt genu-
gend klein ist. Werden nun die Spannungszeiger un aus den verfigbaren
Spannungszeigern Uo bis Ues- ausgewahlt, so folgt, dal} der gemal (6.2.1) gebildete resul-
tierende Spannungszeiger stets innerhalb des Spannungszeigersechsecks liegt.
Im stationaren Zustand ist ein resultierender Spannungszeiger erforderlich, der einen kon-
stanten Betrag hat und mit konstanter Winkelgeschwindigkeit umlauft.
Hieraus folgt, daf} im stationaren Zustand der Betrag der verflUgbaren Spannungszeiger
durch den Radius des Inkreises des Spannungszeigersechsecks begrenzt ist.
Der Betrag des Spannungszeigers, dessen Lange gleich dem Radius des Inkreises des
Spannungszeigersechsecks ist, wird mit Umax bezeichnet. Also gilt

Umax =3 /2 * |Ui | =V3/2 * 2/3 Uz

Umax= 14/3 Uz =0,577 U (6.2.3)
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7. METHODEN ZUR SPANNUNGSZEIGER-SYNTHESE

7.1 VARIATION DES STERNPUNKTPOTENTIALS

Unter Methoden zur Spannungszeigersynthese werden hier Methoden verstanden, mit de-
nen aus der konstanten Gleichspannung des Gleichspannungszwischenkreises quasikon-
tinuierliche Strangspannungen erzeugt werden konnen.

Hierfur gibt es eine Reihe von in der Literatur beschriebenen und in der Praxis verwende-
ten Verfahren.

Die Art des verwendeten Verfahrens hangt dabei wesentlich von der Art des Schaltungs-
technik ab (analog oder digital).

Zunachst soll hier eine Betrachtung angestellt werden, die davon ausgeht, dafl3 abhangig

von den vorgegebenen Strangsollspannungen Us1 , Us2 und Uss kontinuierliche Klemmen-

potentiale V1, V2 und Vs erzeugt werden kdnnen gemal} der Formel:

Vi(t) = Uo(t) +Usi(t) (i=1,2,3) (7.1.1)
Dabei ist Uo(t) eine zunachst frei wahlbare Funktion.
FUr die erzeugbaren Klemmenpotentiale gilt dabei die durch die Zwischenkreisspannung
U2k gegebene Einschrankung :

0V <= Vi(t) <= Uz (i=1,2,3) (7.1.2)
Es wird nun davon ausgegangen, dal} bei der Bestimmung der Strangsollpannungen be-

reits berlcksichtigt ist, dall die Summe der Strangspannungen zu jedem Zeitpunkt Null

ergibt: Ust+ Us2+ Us3=0 (7.1.3)
Fir das Sternpunktpotential Vo folgt dann:
Vo=1/3x(V1+V2+V3)=Uo (7.1.4)

Die Funktion Uo(t) bestimmt also den zeitlichen Verlauf des Sternpunktpotentials.
Die Strangspannungen U+, U2 und Us sind gegeben durch:

Ui(t) = Vi(t) — Vo (t) = Usi(t)  (i=1,2,3) (7.1.5)
Dies bedeutet, dall unabhangig von der Wahl von Uo die Strangspannungen stets gleich
den Sollspannungen sind. Im einfachsten Falle wird man das Sternpunktpotential konstant
halten und wahlen

Vo = Uo (t) = 1/2 Uz .
Bei Verwendung dieser Methode konstanten Sternpunktpotentials gilt also:
Vi(t) = 1/2 Uz +Usi(t)  (i=1,2,3) (7.1.6)

Hieraus folgt, da® dann die Erzeugung von Strangspannungen im Bereich von -1/2 Uz bis
+1/2 Uz mdglich ist.
Bild 7.1 zeigt den Verlauf der Strangsollspannungen bei Vorliegen eines Dreiphasensys-

tem, wie es beim stationaren Betrieb des Synchronmotors auftritt.
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Betrachtet man den Verlauf des Strangsollspannungen, so wird deutlich, daf} zu keinem
Zeitpunkt eine Spannung den Maximalwert annimmt, wahrend eine andere Spannung den
Minimalwert annimmt. Dies flhrt zu der Uberlegung, die Funktion Uo(t) so zu bestimmen,
dald der gemal 7.1.2 verfugbare Bereich der Klemmenpotentiale moglichst gut ausgenutzt
wird. Es wird nun definiert:
Umax (t) = max( Us1(t) ,Us2 (t) ,Us3(t) ) (7.1.7)
Umin(t) = min( Us1(t) ,Us2 (t) ,Us3(t) )
Analog werden die Grofden Vmax (t) und Vmin (t) bestimmt

.Dann gilt:
Vmax(t) = Uo(t) + Umax (1) (7.1.8)
Vmin (t) = Uo(t) + Umin(t)
uaA
0.4U,] A 2 3

Bild 7.1 Dreiphasiges sinusférmiges Spannungssystem
Bei gleichmaRiger Ausnutzung des zur Verfigung stehenden Bereichs gilt zu jedem Zeit-

punkt:
Vmax(t) +Vmin(t) = Uz (7.1.9)
Mit den Gleichungen (7.1.8) folgt dann:
Uo(t) = 1/2 *(Uzk - Umax(t) - Umin(t)) (7.1.10)

Es sei hier noch angemerkt, dall es wegen (7.1.3) zu jedem Zeitpunkt t ein i aus(1,2,3)
gibt, so dal} gilt:
Ui =-Umax(t)-Umin(t) (7.1.11)
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Diese Methode der Bestimmung des Strangpotentiale soll hier als Methode der symmetri-

schen Variation des Sternpunktpotentials zur VergréRerung des Spannungsbereichs be-

zeichnet werden.
In den Bildern 7.2 und 7.3 sind die zeitlichen Verlaufe der Klemmenpotentiale bei kon-
stantem Sternpunktpotential und bei Anwendung der oben beschriebenen Methode der
symmetrischen Variation der Sternpunktpotentiale ausgehend von den in Bild 7.1 gezeig-
ten Strangspannungen gegenubergestellt.
Durch Einsetzen von (7.1.10) in (7.1.8) folgt:

Vmax(t) = 1/2 *( Uzk + Umax (t) - Umin (1) ) (7.1.12)

Vmin(t) = 1/2 *(Uzk - Umax(t) + Umin(t))
Aus jeder dieser Gleichungen folgt mit (7.1.2) :

Umax(t) -Umin(t) <=Uz (7.1.13)

Seien die Strangsollspannungen des Dreiphasensystems gegeben durch:

U1(t) = Uxsin(wt)

U2(t) = Uxsin(wt+2/3 *m) (7.1.14)

Us(t) = Uxsin(wt+4/3 *) .
Fir das zeitliche Maximum der linken Seite von Gleichung (7.1.13) ergibt sich dann der
Wert V3 *U .
Dieses Maximum wird z.B. bei wt = 2/3 *m angenommen (siehe Bild 7.1) .
Aus Gleichung (7.1.13) ergibt sich also fur die Amplitude U der erzeugbaren Strangspan-
nungen bei Verwendung der Methode der Variation des Sternpunktpotentials:

U <= Uz/V3 = 0,577*Uzk (7.1.15)

Bei konstantem Sternpunktpotential gilt demgegenuber: U <= 0,5*Uz,
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Durch Anwendung der Methode der Variation des Sternpunktpotentials ergibt sich also

eine VergroRerung des Spannungsbereichs um ca. 15% .

Bild 7.2 Potentialverldufe bei konstantem Sternpunktpotential
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Bild 7.3 Potentialverldufe bei symmetrischer Variation des Sternpunktpotential

Unter Abkehr von der Potentialsymmetrie kann diese Methode dahingehend variiert wer-
den, dal® dem Klemmenpotential mit dem jeweils geringsten Wert das Nullpotential zuge-
ordnet wird. Die Anwendung dieser Methode ist vorteilhaft hinsichtlich der Schalthaufigkeit
der Schaltelemente bei Erzeugung der Potentiale durch Pulsbreitenmodulation, da hier im
Strang mit dem jeweils kleinsten Klemmenpotential die Schaltvorgange ganz entfallen kon-
nen.

Diese Methode soll hier Methode der kleinsten Potentiale genannt werden, da die dabei

erzeugten Potentiale zu jedem Zeitpunkt die kleinstmoglichen Wert besitzen.
Bild 7.4 zeigt den bei Anwendung dieser Methode der kleinsten Potentiale entstehenden
zeitlichen Verlauf der Klemmenpotentiale, wenn die Strangsollspannungen ein Dreipha-

sensystem bilden.
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Bild 7.4 Potentialverldufe bei minimalem Sternpunktpotential

Es ist offensichtlich, dal® die Bereichsvergro3erung auch hier in der oben genannten Hohe

eintritt.

7.2 SPANNNUNGSZEIGERSYNTHESE NACH DEM
UNTERSCHWINGUNGSVERFAHREN

Ein fur analoge Schaltungstechnik besonders geeignetes Verfahren ist das Unterschwin-
gungsverfahren.

Hierbei werden pro Strang zwei analoge Referenzsignale benutzt. Das eine Referenzsig-
nal ist eine dem Sollwert der entsprechenden Strangspannung proportionale Funktion,
wahrend das andere allen Strangen gemeinsame Referenzsignal eine Dreiecksfunktion
ist. Die beiden Referenzsignale werden mit einem Komparator verglichen, der seinerseits
die zugehorige Halbbrucke steuert.

Die Frequenz des Dreieckssignals muf} hierbei wesentlich hdher als die maximale Fre-
quenz der Strangsollspannung gewahlt sein.

Die Proportionalitat zwischen Strangsollspannung und dem zugehdrigen Referenzsignal
muld so gewahlt sein, dal} bei einer Strangsollspannung von 1/2 Uz die Amplitude des bei-
den Referenzsignale gleich grof} ist. Das Unterschwingungsverfahren bewirkt die Umset-
zung des Strangspannungssollwerts in eine Pulsbreitenmodulation des Klemmen-

potentials. Der Strangspannungssollwert OV erzeugt dabei das Tastverhaltnis 1 und somit
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einen Mittelwert des Klemmenpotentials von 1/2 Uz .

Die Funktionstlichtigkeit dieses Verfahrens ist nur dann unmittelbar evident, wenn man an-
nimmt, das Sternpunktpotential konstant bleibt und den Wert 1/2 Uz hat.

Tatsachlich schwankt jedoch das Sternpunktpotential bei Verwendung dieser Methode und

nimmt abhangig von den Klemmenpotentialen die Werte OV , 1/3 Uz , 2/3 Uz , Uz an.

7.3 SPANNUNGSZEIGERSYNTHESE DURCH PULSBREITENMODULATION

7.3.1 ALLGEMEINES
Bei Verwendung von digitaler Schaltungstechnik entspricht dem Unterschwingungsverfah-
ren das Verfahren der voneinander unabhangigen Pulsbreitenmodulation(PBM) der Klem-
menpotentiale.
Betrachtungen zur Pulsbreitenmodulation finden sich in /3 ORLIK/.
Hierbei werden aus den in digitaler Form vorliegenden Strangsollspannungen Steuerfakto-
ren berechnet.
Dabei ist der Steuerfaktor xi definiert durch:

xi=Ti/Tp, (7.3.1.1)
wobei Ti die Dauer der Aufschaltung der Zwischenkreisspannung auf den Strang i und Tp
die Taktzeit der Pulsbreitenmodulation ist.
Fir die Bestimmung der Steuerfaktoren erhalt man in Analogie zu Gleichung (7.1.6) die
Gleichung:

Xi = 1/2 + Usi/Uz (7.3.1.2)
Die Richtigkeit dieser Formel unter Berucksichtigung der Unstetigkeit des zeitlichen Ver-
laufs der Strangspannungen wird im nachsten Abschnitt gezeigt.

Aus der Definition der Steuerfaktoren xi ergibt sich unmittelbar die Gultigkeit der Unglei-

chung:
0 <=xi<=1 (7.3.1.3)
Bei Benutzung der Formel (7.3.1.2) kénnen also Strangspannungen Us im Bereich:
-1/2 *Uz <= Us <= 1/2 *Uz (7.3.1.4)

realisiert werden.
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Bild 7.5 strangspannungsverlauf des 1. Strangs bei Pulsbreitenmodulation
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Bild 7.6 Strangspannungsverlauf des 1. Strangs bei Pulsbreitenmodulation

Wichtig fur die Gute des Verfahrens ist die Taktzeit Tp.
Bei der Bemessung der Taktzeit Tp ist die Taktzeit Ts des Steueralgorithmus zu bertck-

sichtigen, der die Strangspannungssollwerte liefert.
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Die Steuerfrequenz fs = 1/Ts mul3 grofd gegenuber der hdchsten vorkommenden Strang-
spannungsfrequenz sein. Die Frequenz der Pulsbreitenmodulation fp = 1/Tp sollte ein gan-
zes Vielfaches der Steuerfrequenz fs sein. Im einfachsten Fall ist fs = fp .

Ausgehend von dem in Bild 7.1 gezeigten Dreiphasensystem der Strangsollspannungen
wird in Bild 7.5 der zeitliche Verlauf des Klemmenpotentials eines Strangs bei Anwendung
dieses Verfahrens gezeigt.

Die daraus resultierende Strangspannungsfunktion ist in Bild 7.6 dargestellt.

Die Tatsache, daR die Strangspannungsfunktion sehr stark von den Klemmenpotential-
funktion abweicht, erklart sich aus der Tatsache, dal} das Sternpunktpotential bei Verwen-

dung dieses Verfahrens nicht konstant ist.

7.3.2 BEWEIS DER KORREKTHEIT DES VERFAHRENS
Es soll nun untersucht werden, ob die bei Pulsbreitenmodulation der Klemmenpotentiale
erzeugten Strangspannungen den vorgegebenen Strangsollspannungen entsprechen.
Um die Guiltigkeit der folgenden Uberlegungen méglicht allgemein zu halten, wird hier nur
benutzt, dal die Zwischenkreisspannung wahrend der Zeitdauer Ti innerhalb des Inter-
valls Tp auf den Strang i geschaltet ist.
uber die Anzahl der dabei pro Strang verwendeten Spannungsbldocke und ihre Lage im In-
tervall Tp wird keine Voraussetzung gemacht.
Wie bereits oben gesagt, liegt zu jedem Zeitpunkt innerhalb des Intervalls Te einer von 7
diskreten Spannungszeigern an (siehe Tabelle 6.1).
Sei tn die Gesamtdauer der Zeit innerhalb des Intervalls Tr, in der der Spannungszeiger
Un anliegt (n=1..7).
Aus Tabelle 6.1 entnimmt man nun:

T1 = ti+to+te+t?

T2 = to+ts+ta+l7 (7.3.2.1)

T3 = t«+ts+ls+t7
Fir den durch Mittelwertbildung gewonnenen resultierenden Spannungszeiger U gilt:
Te*U =21t *Un(7.3.2.2)
Wegen Us+s = -Un flr n=1,2,3 folgt hieraus:

Tp*U = Z (tn-tn +3)*Un (7.3.2.3)
Mit U2 = Ui + Us erhalt man:

Tp *U = (ti-ta + t2-ts)*Ui + (t3-te + t2-ta)*Us

Te*U = (Ti - Ts)*Ui + (T2 - T3)*Us (7.3.2.4)
Unter Benutzung der Definition (7.3.1.1) der Steuerfaktoren xi ergibt sich:

U=(x1-x3)*U1+ (x2-x3)*Us (7.3.2.3)
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Mit der Gleichung (7.3.1.2) erhalt man:
y= (Us1 -Us3)/uzk *y1 + (Us2 -Us3)/Uzk *y3 (7.3.2.6)
Mit yn = -Ul - y3 folgt:

Y = Us1*y1/uzk + Us2*y3/Uzk + Us3*yaluzx  (7.3.2.7)

Unter Verwendung der Definition der Spannungszeiger erhalt man:

U = Usl*2/3+ Us2*2/3%a + Us3*2/3xa? , (7.3.2.8)
wobei a = exp(j*2*11/3) ist.

U = 2/3 *(Usi + Us2*a + Us3*a?)
Die rechte Seite dieser Gleichung ist gemaf Definition der komplexe Sollspannungszeiger
Us, sodald gilt: U =Us.
Damit ist in einem sehr allgemeinen Sinne die Korrektheit aller Verfahren, die eine Puls-
breitenmodulation der Klemmenpotentiale gemal’ Gleichung 7.3.1.2 benutzen, nachgewie-
sen. Bei diesem Beweis wurde die Wirkung der tatsachlich wirkenden Spannungszeiger
aufgrund der Beziehungen zwischen den Spannungszeigern durch die Wirkung der drei

Zeiger U1, Us und Ua ersetzt.

7.3.3 VARIATION DES STERNPUNKTPOTENTIALS BEI PBM

Es wird nun der zeitliche Verlauf der Strangspannungen wahrend einer Taktperiode T des
Pulsbreitenmodulators betrachtet. Bild 7.7 zeigt einen angenommenen Verlauf der Klem-
menpotentiale und den daraus resultierenden Verlauf der Strangspannungen wahrend ei-

ner Taktperiode Tp des Pulsbreitenmodulators.

Vig Up
> C : >
T t T t
Va4 Uz
. > [ r
Tt Tt
V34 Us4
I ’ T "
T t __r—l T t

Bild 7.7 Potentiale und Spannungen wéhrend einer
Taktperiode des Pulsbreitenmodulators
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Aus dem Bild wird ersichtlich, da® wahrend Te (maximal) vier Schaltzustande vorliegen.
Die Zeitdauern des Vorliegens der Schaltzustande in der Reihenfolge ihres Auftreten wer-
den mit n bezeichnet. Dabei ist auch Ti = 0 zulassig. Damit ist gewahrleistet, dalk die An-
zahl der Schaltzustande stets vier ist. Wahrend Ti und r« liegt der Nullspannungszeiger 0.
an, so dal} insgesamt maximal drei verschiedene Spannungszeiger wahrend Tp anliegen.
Werden nun alle Steuerfaktoren xi im Sinne einer Variation des Sternpunktpotentials um
den gleichen Betrag erhdht oder gesenkt, so bedeutet dies, dal sich alle Schaltzeitpunkte
um einen gleichen Betrag verschieben. Daraus ergibt sich, dal® die Zeitdauern 12, Ta und
Ti+14 konstant bleiben.
Die Anwendung der Methode der Variation des Sternpunktpotentials bewirkt hier also eine
andere Verteilung des Zeitraums, wahrend dessen der Nullvektor geschaltet ist, innerhalb
des Intervalls T.
Ihre Anwendung bewirkt jedoch auch hier eine VergoRRerung des Spannungsbereichs, da
sie den Bereich vergroert, in dem die Steuerfaktoren innerhalb des zulassigen Intervalls
L°, 13 liegen. Bei Anwendung der Methode der Variation des Sternpunktpotentials tritt an-
stelle der Gleichung (7.3.1.2) die folgende Gleichung fir die Bestimmung des Steuerfak-
tors xi :

xi = 1/2 + (Usi-1/2 *(Umax(t) + Umin (t) )/Uz (7.3.3.1)

7.3.4 LAGE DER SPANNUNGSZEIGER BEI PBM

Nun wird untersucht, welche relative Lage die erzeugenden Spannungszeiger zum er-
zeugten Spannnungszeiger haben.

,Aufgrund der Symmetrie der Maschine ist es ausreichend hierzu einen Spannungszeiger
im 1. Sextanten zu betrachten. Jeder in einem anderen Quadranten gelegene Spannungs-
zeiger lalt sich geeignete Umnumerierung der Strange auf den hier betrachteten Fall zu-
ruckfihren.

Wir gehen von einem Spannungszeiger U = U*eJ® im 1. Sextanten aus. Dann gilt:
0<=R<=n/3.

Fir die Komponenten Ux und Uy des Spannungszeigers U gilt dann:

Ux = U*cos(3) Uy = U*sin(R)

Fir die Strangspannungen erhalt man durch Projektion des Spannungszeigers U auf die
den Strangen entsprechenden Achsen gemal den Beziehungen (1.1.3.9) bis (1.1.3.11)
die Ungleichungen:

0,5*U <=Ui <= U

-0,5*U <=U2 <= 0,5*U
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-U <=Ua<= -0,5*U
Sei Ti der Schaltzeitpunkt, bei dem im Strang i die Umschaltung von der Spannung Uz zur
Spannung 0V erfolgt.
Nach Gleichung (7.3.1.2) folgt dann aus den obigen drei Ungleichungen fur die Schaltzeit-
punkte die Ungleichung:
Ta<=T2<=Ti
Dies bedeutet, dal} sich fur die Schaltzustande gemaf Tabelle 6.1 die folgende Reihen-
folge ergibt: 7,2,1,0
Aus Tabelle 6.1 entnimmt man, dal® hierzu die Spannungszeigerreihenfolge:
Uo, Ui, Uz, Uo gehort.
Der Spannungszeiger wird also bei Verwendung des Verfahrens der Pulsbreitenmodula-
tion stets aus den dem zu erzeugenden Spannungs zeiger benachbarten Spannungszei-
gern und dem Nullzeiger erzeugt
Das Verfahren der Spannungszeigersynthese durch Pulsbreitenmodulation der Klemmen-
potentiale erweist sich also aquivalent zu dem noch zu beschreibenden 3-Vektor-Verfah-
ren. Wahlt man die Methode der kleinsten Potentiale, so ist das Verfahren der
Spannungszeigersynthese durch Pulsbreitenmodulation identisch mit dem 3-Vektor-Ver-
fahren. Der Unterschied zwischen den beiden Verfahren besteht allein im Rechengang zur

Bestimmung der Schaltzeitpunkte.

7-4 SPANNUNGSZEIGERSYNTHESE DURCH KOMBINATION VON
SPANNUNGSZEIGERN

7.4.1 ALLGEMEINES

Verfahren der Kombination von Spannungszeigern bestehen darin, einen vorgebenen
Spannungszeiger durch eine Folge von Spannungszeigern Ui und eine entsprechende
Folge von Wirkungsdauern ti zu realisieren.

Das allgemeinste Verfahren macht keine Einschrankung hinsichtlich der Lange der Wir-
kungdauern. Es ist fur die praktische Anwendung nicht geeignet, da fur das Durchlaufen
des Algorithmus zur Bestimmung des nachsten Spannungszeigers und seiner Wirkungs-
dauer eine endliche Zeit bendtigt wird, die moglicherweise groRer ist als die berechnete
Wirkungsdauer des gerade geschalteten Spannungszeigers .

Die Anpassung an die Notwendigkeiten der Digitaltechnik erfordert Verfahren , die mit ei-
ner festen Taktzeit arbeiten, wobei die Taktzeit grof3er als die Zykluszeit des Berech-

nungsalgorithmus sein muR.
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Diese Verfahren lassen sich klassifizieren durch die Zahl der Spannungszeiger, die wah-
rend eines Taktes geschaltet werden. Dementsprechend unterscheiden wir 1-Vektor-Ver-
fahren, 2-Vektor- Verfahren und 3-Vektor-Verfahren, die im Folgenden beschrieben

werden.

7.4.2 DAS 1-VEKTOR-VERFAHREN

Hier haben alle geschalteten Spannungszeiger die gleiche Wirkungsdauer Tp. Es stehen
demzufolge nur die in Bild 7.8 gezeigten sieben diskreten Spannungszeiger zur Verfu-
gung. Die Bestimmung des zu schaltenden Spannungszeiger in Abhangigkeit von einem
vorgegebenen Sollspannungszeiger Us erfolgt im einfachsten Falle so, dal} stets der
Spannungszeiger Ui gewahlt wird, fir den der Differenzzeiger Us - Ui die kleinste Lange

hat. Auf diese Weise entstehen Gebiete in der Spannungszeigerebene. Allen

Uy 4

Bild 7.8 realisierbare Spannungspunkte beim 1-Vektor-Verfahren
in einem Gebiet liegenden Sollspannungszeigern wird der gleiche erzeugte Spannungszei-
ger zugeordnet. Es ist erkennbar, dal® dieses Verfahren ein sehr grobes ist.
Flr das Maximum des Fehlerzeigerbetrags |Us - Ui | ,das als Kriterium fur die Gute des
Verfahrens geeignet ist, gilt hier:

max( |Us - Ui |) > 1/2 x|Ui |

Di e Auswirkungen der Grobheit des Spannungserzeugungsverfahrens auf die Bahn des
Stromzeigers i kdnnen jedoch bei genligend kurzer Taktzeit Tp in zumutbaren Grenzen ge-
halten werden, da die Sollwerte des Spannungszeigers jeweils in Abhangigkeit vom Ist-
wert des Stromzeigers bestimmt werden und somit eine Regelschleife vorliegt.
Eine Verbesserung des Verfahrens lafit sich dadurch erzielen, dal bereits in den Algorith-

mus zur Bestimmung des Spannungszeigers ein Regelalgorithmus eingebaut wird. Diese



-72-

Methode wird von B. Schwarz /ll/ benutzt. Hierbei wird der zeitlich integrierte Differenzzei-
ger Us - Ui zusatzlich zum aktuellen Sollzeiger als Kriterium flr die Auswahl des zu schal-
tenden Spannungszeigers benutzt. Somit wird eine gegenuber dem einfachen Verfahren,
bei dem erst die Auswirkung auf den Stromzeiger zur Korrektur benutzt wird, wesentlich

kUrzere Reglerzeitkonstante erzielt.

7.4.3 DAS 2-VEKTOR-VERFAHREN
Pro Taktperiode gelangen hier jeweils zwei Spannungszeiger zum Einsatz, wobei die Wir-
kungsdauer der Spannungszeiger veranderlich ist.
Diesen beiden Spannungszeigern wird nun durch zeitliche Mittelwertbildung tber die Takt-
periode Tp ein resultierender Spannungszeiger U zugeordnet, der in den folgenden Uber-
legungen verwendet wird.
Sind Ui und Uk die geschalteten Spannungszeiger, so berechnet sich der resultierende
Spannungszeiger U zu:U = (t*Ui + (Tp-ti ) *Uk)/Te (7.4.3.1)
Dabei ist ti die Wirkungsdauer des Spannungszeigers Ui. Flihrt man hier den Steuerfaktor
x = ti/Tp ein, so folgt:

U =x*Ui + (1-x)*Uk (7.4.3.2)
, wobei 0<=x<=1 ist.
Dies bedeutet, dald der resultierende Spannungspunkt U stets auf der die beiden Punkte
Ui und Uk verbindenden Strecke liegt. Bei Variation des Steuerfaktors x innerhalb der zu-
lassigen Grenzen durchlauft der Punkt U die gesamte Ui und Uk verbindende Strecke.
Bild 7.9 zeigt die Menge aller nach dem 2-Vektorverfahren erzeugbaren resultierenden

Spannungspunkte.

Bild 7.9 realisierbare Spannungspunkte beim 2-Vektor-Verfahren
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Ein Vergleich mit den Verhaltnissen bei dem 1-Vektorverfahren, bei dem nur sechs dis-
krete Spannungspunkte zur Verfigung stehen, zeigt, dal® durch Verwendung dieses Ver-
fahrens eine wesentliche Verbesserung des Genauigkeit zu erzielen ist.

Bei einer praktischen Realisierung dieses Verfahrens bereitet die Auswahl einer Kombina-
tion Ui, Uk aus der Vielzahl der zur Verfligung stehenden Kombinationen Schwierigkeiten.
Man wird sich deshalb auf die Kombinationen eines Spannungszeigers Ui mit dem
Nullspannungszeiger Uo beschranken.

Bild 7.10 zeigt die dann realisierbare Menge von Spannungspunkten.

Uy‘

Bild 7.10 realisierbare Spannungspunkte beim eingeschrdnkten 2-Vektor-Verfahren
Die Auswahl des Spannungszeigers Ui und des Steuerfaktors x kann dann wieder nach
dem Kriterium des kleinsten Fehlerzeigerbetrags erfolgen.

Fur das Maximum des Fehlerzeigerbetrags gilt hier:

max(|Us - U]) = 1/4 *\/3x|Ui| (7.4.3.3)

Die Korrektur des bei der Spannungserzeugung nach diesem Verfahren entstehenden
Fehlers kann wieder auf dem Wege Uber die Ruckkopplung durch den gemessenen
Stromzeiger oder wie beim 1-Vektor-

Verfahren beschrieben, durch einen in den Spannungszeigersynthesealgorithmus einge-
bauten Regelalgorithmus erfolgen. Bei der Benutzung dieses Verfahrens wird haufig der
Fall auftreten, dal® in mehreren aufeinanderfolgenden Taktperioden der ausgewahlte
Spannungszeiger Ui identisch ist. Dies ist insbesondere beim stationaren Betrieb des Mo-
tors zu erwarten.

Eine Verringerung der Schalthaufigkeit der Schaltelemente 1a3t sich hier erzielen, indem in
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aufeinanderfolgenden Taktperioden jeweils die zeitliche Reihenfolge der beiden geschalte-
ten Zeiger vertauscht wird. Unter der oben gemachten Voraussetzung entfallt dann pro

Taktperiode die Umschaltung einer Halbbrucke.

7.4.4 DAS 3-VEKTOR-VERFAHREN
Hier wird der resultierende Spannungszeiger U durch Kombination von drei Spannungs-
zeigern U1, U2 und Us erzeugt.

Sind t1 und t2 die Wirkungdauern der beiden ersten Spannungszeiger, so gilt:

U= (t1*U1 + t2*U2 + (Tp-t1-t2 ) *Us )/Tp (7.4.4.1)
Mit den Steuerfaktoren xi = ti/Tp und xz = t2/Tp folgt nun:
U =x1 *U1 + x2 *Uz2 + (1-x1-x2)*Us3 (7.4.4.2)

Dies Gleichung besagt, dal} der resultierende Spannungspunkt U stets innerhalb des von
den Spannungspunkten U1, U2 und Us aufgespannten Dreiecks liegt.
Zu einem beliebigen Punkt U innerhalb des von den Spannungspunkten U1, U2 und U3
aufgespannten Dreiecks gibt es andererseits stets Steuerfaktoren x1 und x2 , so dal} dieser
Punkt der resultierende Spannungspunkt ist.
Durch Aufspaltung der komplexen Gleichung (7.4.4.2) in zwei reelle Gleichungen und Um-
formung derselben folgt:
Ux = X1*(U1x = Uax) + x2*(U2x-Usx) + Usx (7.4.4.3)
Uy = x1x(U1y - Usy) + x2*(U2y-Usy) + Usy
Durch Auflésung dieser Gleichungen nach den den Steuerfaktoren x1 und x2 erhalt man
die Bestimmungsgleichungen fur die Steuerfaktoren.
Mit der Einschrankung U3 = O folgen aus (7.4.4,3) die Gleichungen:
Ux = x1*U1 x + X2 *U2x (7.4.4.4)
Uy=x1*Uy +x2*Uy
Durch Aufldsung der dieser Gleichungen nach den Steuerfaktoren xi und x2 folgt nun:
x1= (Ux *Uz2y - Uy *U2x) / (U1x*Uz2y - U1y *U2x) (7.4.4.5)
x2 = (Uy *U1x - Ux *U1y) / (U1x*Uz2y - U1y*U2x)
Die Betrachtung des Spannungssechsecks zeigt, dal sich das gesamte Spannungssechs-
eck aus Dreiecken zusammensetzen lal3t, die jeweils von zwei benachbarten Spannungs-
punkten und dem Nullpunkt aufgespannt werden.
Es genugt also, nur Spannungszeigertripel (U1,U2,0 ) zu betrachten, wobei U1 und U2 be-
nachbarte Spannungszeiger sind.
Bei der Bestimmung der Steuerfaktoren ist zunachst der Sextant zu bestimmen, in dem
der Spannungszeiger U liegt. Hierzu ist der Winkel arg(U) zu bilden und mit den Werten
0°, 60°, 120°, 180°, 240°, 300° zu vergleichen.
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Es ist nun gunstig, den Spannungszeiger U in ein gedrehtes Koordinatensystem umzu-
rechnen. Die Achsen dieses statorfesten Koordinatensystems werden mit x‘ und y’ be-
zeichnet.
Die Komponenten Ux und Uy erhalt man gemalfd:
Ux'= cos(B)*Ux -sin(f3)*Uy (7.4.4.6)
Uy’ = sin(R)*Ux + cos(3)*Uy,
wobei 3 der Winkel zwischen der x' und der x-Achse ist.
Bezuglich der Lage des x'-y'-Koordinatensystems gibt es zwei Moglichkeiten:
a) Die x'-Achse fallt mit dem dem Spannungszeiger U rechtsseitig benachbarten Zeiger Un
zusammen.
Es gilt hier mit U = |U1| :
Uix =UA Uiy =0 (7.4.4.7)
U2x' = 0,5*UN |, Ugy =v/3 /2 *UA
Aus (7.4.4.6) erhalt man nun:
Ux’ = x1 *U” + x2 *0,5*U” (7.4.4.8)
Uy‘ = x2 v/3/2 *UA
Durch Auflésung nach den Steuerfaktoren folgt hieraus:
x1 = (Ux - 14/3 *Uy ) /UA (7.4.4.9)
x2 = 2//3 Uy/UA
Bild 7.11 zeigt, dal} sich die Gleichungen (7.4.4.9) auch geometrisch herleiten lassen.

V3

ux ul ux

Bild 7.11 Spannungszeigersynthese nach dem 3-Vektor-Verfahren
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b) Das Koordinatensystem wird so gewahlt, daf’ die x'-Achse identisch ist mit der Winkel-
halbierenden der beiden dem Spannungszeiger U benachbarten Spannungszeiger.
Hier qilt:
Utx = v/3 /2 *UA, Uy = -0,5*UA (7.4.4.10)
U2d' =+/3/2 *U*, Uy = 0,5*UN
Aus (7.4.4.6) folgt in diesem Falle:
Ux *= ( X1 +x2) *0,5'V3 UA (7.4.4.11)
Uy > = (-x1 +x2 ) *0,5*U"
Durch Auflésung nach x1 und x2 erhalt man:
x1 = (Ux' /3 - Uy)/UA (7.4.4.12)
x2= (Ux 'W/3 + Uy ) JUA
Eine weitere Mdglichkeit des Vorgehens besteht darin, den Spannungszeiger U gleich zu
Beginn der Rechnung in Polarkoordinaten umzurechnen:
B=arg(U),U=1Y|.
Es lassen sich hier nun zwei Berechnungsarten unterscheiden:
c) Bei der Vorgehensweise entsprechend a) wird der Winkel R' =3 — 3o
so gebildet, so dal 0° <= ' < 60° ist, wobei 30 aus den Werten 0° , 60°, 120°, 180°, 240°,
300° zu wahlen ist. Die Steuerfaktoren werden dann nach den folgenden Formeln be-
stimmt:
x1 = (cos(R') - 14/3 *sin(R'))*U/UA (7.4.4.13)
x2 = 2\/3 *sin(R')*U/UA
Durch Umformung der ersten Gleichung unter Verwendung des Additionstheorems fur die
Sinusfunktion erhalt man eine einfachere Form der obigen Formeln:
x1=2/\/3 *sin(60° - R") *U/UA (7.4.4.14)
x2 = 2/7/3 *sin(R')*U/UA
d) Bei Vorgehensweise entsprechend b) wird der Winkel ' = 3 -30 so gebildet, so dal}
-30°<= [3'<30° ist, wobei 3o aus den Werten 30°, 90°, 150°, 210°, 270°, 330° zu wahlen ist.
Far die Steuerfaktoren gilt dann:
X1 = (cos(R')/ V3 - sin(R’))*U/UA (7.4.4.15)
X2 = (cos(R')/ V3 + sin(R")*U/U”
Durch Anwendung der trigonometrischen Additionstheoreme folgt:
x1 = 2/7/3 *cos(R'+30°)*U/UA (7.4.4.16)
x2 = 2/v/3 *cos(R'-30°)*U/UA
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Bild 7.12 Abh&ngigkeit der Steuerfaktoren x1, x2 und x3 vom Winkel 3’

Die Berechnung nach c) oder d) besitzt gegentber der Berechnung nach a) oder b) den
Vorteil geringeren Rechenaufwands. Zudem sind hier die nichtlinearen Terme nur vom
Winkel ' abhangig. Die obigen Gleichungen zeigen, dal® man bei der Bestimmung der
nichtlinearen Terme mit einer tabellierten Winkelfunktion auskommt.
Bild 7.12 zeigt den Verlauf der Steuerfaktoren x1 , x2und x3 = 1-x1-x2 in Abhangigkeit vom
Winkel ¥’ des Spannungszeigers U, wobei ein Koordinatensystem nach a) bzw. c) zu-
grunde gelegt ist.
Der Betrag U des Spannungszeigers hat im dargestellten Fall den Wert U = v/3/2 UA.
Ebenfalls erkennbar ist die relativ geringe Abweichung der Kurven vom linearen Verlauf.
Werden also geringe Anforderungen an die Genauigkeit gestellt, so kdnnen anstelle der
Funktionen (7.4.4.13) die entsprechenden linearisierten Funktionen verwendet werden.
Diese sind gegeben durch:
x1 = 3'/60° xU/UA (7.4.417)
x2 = (1 - R'/60°) xU/UA
Durch Einsetzen dieser Funktionen in die Gleichungen (7.4.4.8) folgt:
Ux- = R'/60° *U + (1 - R/60°)*0,5*U” (7.4.4.18)
Uy- = (1 - R'/60°)*/3 /2 *UA
Hieraus wird ersichtlich, dafld der Weg des Spannungspunktes in Abhangigkeit vom Winkel

R'in diesem Fall eine Strecke ist, die dieselben Endpunkte hat wie der bei Verwendung
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der exakten Formel entstehende 60°-Kreisbogen.

7.4.5 VERGLEICH DER VERFAHREN

In einigen Arbeiten werden 1-Vektor-Verfahren und 2-Vektor-Verfahren beschrieben und
im Labor verwirklicht und erprobt (z.B. /Il SCHWARZ/. Das 3-Vektorverfahren findet sich in
der benutzten Literatur zuerst bei ORLIK /8/.

Dem 1-Vektor-Verfahren und dem 2-Vektor-Verfahren haftet der Nachteil an, daf3 bei ihrer
Verwendung ein vorgegebener Spannungszeiger nur mit einem mehr oder weniger grof3en
Fehler erzeugt werden kann. Dieser Fehler bei der Spannungszeigersynthese bewirkt
Fehler bei der Fihrung des Stromzeigers. Diese kdnnen nur dann klein gehalten werden,
wenn die verwendete Taktfrequenz sehr grol} ist.

Dagegen ist beim 3-Vektor-Verfahrens jeder Spannungszeiger innerhalb des Spannungss-
echsecks erzeugbar. Hieraus ergibt sich die Mdglichkeit zur genauen und systematischen
FUhrung des Stromzeigers. Abschlieend laft sich sagen, dal das 3-Vektor-Verfahren

dem 1-Vektor-Verfahren und dem 2-Vektor-Verfahren unbedingt vorzuziehen ist.

7.4.6 DER ZWISCHENKREISSTROM
Aus dem Schaltbild ist ersichtlich, dal® der Zwischenkeisstrom izk betragsmallig stets mit
einem der drei Strangstrome Ubereinstimmt. Dies kann durch den Ansatz:
izk =~ da *ia + db *ib + dc *ic

berlcksichtigt werden. Die Faktoren da, db und dc nehmen dabei abhangig vom anliegen-
den Spannungszeiger die Werte 0 oder 1 an.
Einfacher als dieser Ansatz, der jedoch zum gleichen Resultat flhrt, ist die Berechnung
des Zwischenkeisstroms Uber die Leistung. Die folgende Berechnung wird in nicht bezoge-
nen Grof3en durchgeflhrt.
Die in den Stator eingespeiste elektrische Leistung ist nach (1.1.6.2) gegeben durch:

P = 3/2 xRe(u*i*)
Die vom Zwischenkreis abgegebene Leitung ist:

P = Uz iz (7.4.6.1)
Daraus folgt:

izk = 3/2 xRe(u*i*)/Uz 7.4.6.2)

izk = Re(u/(2/3 *Uz ) *i¥)
Der hier auftretende Zeiger u/(2/3 *Uz) hat -abgesehen vom Kurzschluf}fall - den Betrag 1.
Der Ausdruck Re(u*i*) ist nun gleich dem Skalarpodukt der zugeordneten Vektoren u und i

Damit folgt:
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izk = U/(2/3 *Uz) *i (7.4.6.3)
Wichtig ist es hier zu untersuchen, wann ein negativer Zwischenkreisstrom auftritt.
Bei negativem Zwischenkreisstrom flie3t dieser namlich nicht Gber die Schaltelemente,
sondern uber die diesen parallelgeschalteten Freilaufdioden. Aul3erdem tritt eine momen-
tane Leistungseinspeisung in den Zwischenkreis auf.
Gleichung (7.4.6.3) besagt nun, dal} der Zwischenkreisstrom genau dann negativ ist, wenn

der Winkel zwischen u und i betragsmaliig gréflier als 90° ist.

7.4.7 POTENTIALE, SPANNUNGEN UND STROME BEI ANWENDUNG DES 3-
VEKTOR-VERFAHRENS

Der Zeitverlauf der Klemmenpotentiale und der Spannungen wurde mit einem Computer-
programm berechnet. Dabei wurde von einem Drehfeld konstanter Winkelgeschwindigkeit
und Amplitude ausgegangen. Die Rotordrehung wurde als zum Drehfeld synchron ange-
nommen.

Bild 7.13 zeigt den zeitlichen Verlauf des Klemmenpotentials flr den ersten Strang. Die
dargestellte Funktion ist das durch Pulsweitenmodulation entstandene Abbild eines der in
Bild 7.4 dargestellten Potentialverlaufe.

Bild 7.14 zeigt den zeitlichen Verlauf der Strangspannung im ersten Strang.

Bild 7.15 zeigt den zeitlichen Verlauf der y-Komponente uy des Spannungszeigers im stator-
festen System. Die x-Komponente ux ist mit der in Bild 7.14 gezeigten Strangspannung iden-
tisch. Die Tatsache, dal} bei der x-Komponente zwei Pulshohen auftreten, wahrend bei der
y-Komponente nur eine Pulshéhe auftritt, ergibt sich unmittelbar aus der Lage des Span-
nungszeigersechsecks.

Die Bilder 7.16 und 7.17 zeigen schlieBlich den zeitlichen Verlauf der Komponenten des
Spannungszeigers im d-q-System. Der Sollwert der Komponente ua ist dabei Null.

Die Zeitverlaufe der Strome wurden mit einem selbsterstellten Simulationsprogramm be-
rechnet. Dabei wurde wie bei den gezeigten Spannungsverlaufen ein konstantes

Drehfeld vorgegeben. Dem Rotor wurde eine zum Drehfeld synchrone Anfangsgeschwin-
digkeit gegeben. Damit die Zeitverlaufe nicht durch zusatzliche Polradpendelungen beein-
flukt werden, wurde mit einem sehr groRen Rotortragheitsmoment gearbeitet. Die
Simulation wurde in bezogenen GroéRen durchgefuhrt. Bild 7.18 zeigt den zeitlichen Ver-
lauf der Komponenten des Stromzeigers im rotorfesten System bei der PWM-Taktzeit Tt
=0,5. Die Rotorwinkelgeschwindigkeit betragt hier w = 0,314. Die PWM-Taktzeit wurde
hier absichtlich sehr grol3 gewahlt, damit die Stromschwankungen deutlich hervortreten.
Bild 7.19 zeigt den zeitlichen Verlauf der Komponenten des Stromzeigers im rotorfesten
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System bei der PWM-Taktzeit Tt =0,1. Die Schwankungen des Stroms sind hier sehr ge-
ring. Das System verhalt sich bei der angegebenen PWM-Taktzeit praktisch so, als ob
kontinuierliche Strangspannungen vorlagen.

Die Bilder 7.20 und 7.21 zeigen den zeitlichen Verlauf des Zwischenkreisstroms iz« bei Tt
=0,5 und Tt =0,1 . Der Zwischenkreis muf} so ausgelegt sein, daf} die hier gezeigten

Stromverlaufe wenigstens naherungsweise maglich sind.

N

.Bild 7.13 Potentialverlauf beim 3-Vektorverfahren

Ux A

0,8V,

Bild 7.14 Strangspannungsverlauf beim 3-Vektor-Verfahren



-81-

//
oY

Bild 7.15 Zeitlicher Verlauf von Uy beim 3-Vektor-Verfahren

ud A

0,8U]

4

Al ol ol Al ol

f———

|l R

Bild 7.16 Zeitlicher Verlauf von Ud beim 3-Vektor-Verfahren
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Bild 7.17 Zeitlicher Verlauf von u, beim 3-Vektor-Verfahren

Bild 7.18 Zeitlicher Verlauf von id und iq beim 3-Vektor-Verfahren mit bezogener Pulsmo-
dulationstaktzeit T = 0,5

Bild 7.20 Zeitlicher Verlauf von i-x beim 3-Vektor-Verfahren mit bezogener Pulsmodulation-
staktzeit T = 0,5

>

11 l{ ;I T

Bild 7.20 Zeitlicher Verlauf von izk beim 3-Vektor-Verfahren
mit bezogener Pulsmodulationstaktzeit T = 0,5
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Bild 7.21 Zeitlicher Verlauf von ik beim 3-Vektor-Verfahren
mit bezogener Pulsmodulationstaktzeit T = 0,1
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7.4.8 DER EINFLUSS DER ZWISCHENKREISSPANNUNG
Die Hohe der Zwischenkreisspannung Uzk hat nur geringen Einflul} auf die Welligkeit der
Strangstrome. Allerdings mul} berlcksichtigt werden, daf3 die Hohe von Uz in Verbindung
mit der Stufung der Taktzeit der Pulsbreitenmodulation die Glte der Spannungszeigersyn-
these beeinflullt. Die Anzahl der Stufen, in die die Taktzeit T aufgeldst wird, sei mit N be-
zeichnet.
Um bei zwei verschiedenen Zwischenkreisspannungen Uzk1 und Uz die gleiche Gute der
Spannungszeigersynthese zu erzielen, mul} fir die zugehdrigen Stufenzahlen N1 und N2
gelten :
Uzk1/ N1 = Uz2 /N2 (7.4.8.1)
GrolRen Einflu hat dagegen die Zwischenkreisspannung auf die Dynamik des Systems.
Entscheidend ist hier die maximal erzielbare Anstiegsgeschwindigkeit di/dt des Stator-
strombetrags.
Diese ist bei i = 0 in nicht bezogenen Grolden gegeben durch:
di/dt = Uz/Te (7.4.8.2)

Um die bei vergrof3ertem Uz vorhandene Dynamik voll nutzen zu kénnen, ist eine entspre-
chend kleinere Taktzeit TR der Regelung oder Steuerung erforderlich.
Der ausgehend vom stromlosen Zustand i = 0 bei Vollaussteuerung nach der Zeit TR vor-
handene Statorstrombetrag i(TRr) ist fur Tr << Ter:

i((Tr) = Uz/ Tel xTR (7.4.8.3)
Soll dieser Wert gleich bleiben, so mul} fir die bei den zwei verschiedenen Zwischenkreis-
spannungen Uz und Uz verwendeten Regeltaktzeiten Tr1 und Tr2 gelten:

Uzk1 *Tr1 = Uzk2 xTr2 (7.4.8.4)

7.5 MOMENTENWELLIGKEIT BEI VERWENDUNG DES 3-VEKTORVERFAHRENS

7.5.1 ABHANGIGKEIT DER MOMENTENWELLIGKEIT VON DER TAKTZEIT

Die Synthese eines Spannungszeigers aus diskreten Spannungszeigern nach dem 3-Vek-
torverfahren bewirkt eine von der verwendeten Taktfrequenz abhangige Stérung des We-
ges des Stromzeigers. Auch bei einer optimalen Regelung treten hier
"Zickzackbewegungen" des Stromzeigers auf, die zu einer Welligkeit des von der Ma-
schine erzeugten Moments mei flihren.

Diese Welligkeit des Moments nimmt mit der verwendeten Taktzeit T zu. Die Welligkeit
des Moments beeinflul3t die mechanischen GréRen Drehwinkel, Drehzahl und Winkelbe-

schleunigung des Systems.



-85-

Eine Welligkeit konstanter Amplitude bewirkt dabei bei geringer Frequenz eine groliere
Schwankung der mechanischen Grélien als eine hohe Frequenz, bei der die Stérungen
durch das Tragheitsmoment des Systems stark gedampft werden. Die Beeinflussung der
mechanischen GrofRen durch die Momentenwelligkeit soll nun untersucht werden.
Im folgenden wird die Abhangigkeit der Amplitude A der Momentenwelligkeit von der Takt-
zeit T der Spannungszeigersynthese naher untersucht. Dabei wird dabei hier nur der Fall
des Rotorstillstands betrachtet.
Far den Momentenverlauf wird dabei der folgende Ansatz gemacht:

Mel=Melo+A Mei(t) (7.5.1.1)
Hierin ist meio der Mittelwert des Moments, wahrend A mel die Uberlagerte Momenten-

schwankung ist.

7.5.2 MOMENTENWELLIGKEIT BEI ROTORSTILLSTAND
Bei Rotorstillstand ist die Bewegungsgleichung des Stromzeigers im statorfesten System
gegeben durch:

i(t) = e-**i(0) + (I-e)*u (7.5.2.1)
Wie bereits fruher ausgefuhrt, bewegt sich der Strompunkt im bezogenen Groliensystem
auf der Verbindungsstrecke vom Punkt i(0) zum Punkt u hin.
Setzt man einen idealen Regler voraus, der ein konstantes Moment liefert, so erreicht der
Strompunkt zur Zeit T wieder den Stromsollwert i(0) :

i(T) =1i(0) (7.5.2.2)
Der Strompunkt bewegt sich also auf einem Dreieck, dessen eine Ecke der Stromsollpunkt

i(0) ist.

Dieser Sachverhalt ist in Bild 7.22 dargestellt. Zusatzlich ist dort strichliert der Weg des
Stromzeigers eingezeichnet, der sich ergibt, wenn die Reihenfolge der verwendeten Span-
nungszeiger umgedreht wird.

Es wird deutlich, dald bei Vertauschung der Spannungszeigerfolge nicht nur die Schaltfre-
quenz der Transistoren reduziert wird, sondern auch erreicht wird, dal} der Mittelwert des
erzeugten Moments gleich dem vom Stromsollwert erzeugten Moment ist.

Allerdings wird hierdurch - wie Bild 7.22 ebenfalls zeigt - eine Verdoppelung der GroéRe der
Momentenschwankung bewirkt.

Es wird nun untersucht, bei welcher Konstellation die grof3te Abweichung des Strompunkts
vom Stromsollpunkt auftritt. Dies ist offenbar dann der Fall, wenn nur zwei Spannungszei-
ger an der Spannungserzeugung beteiligt sind.

Das Dreieck entartet dann zu einer Strecke, die vom Strompunkt vorwarts und rickwarts
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durchlaufen wird.

Bild 7.22 Weg des Stromzeigers bei Rotorstillstand

Es wird nun die Kombination eines Spannungszeigers mit dem Nullzeiger betrachet.

Da sich das Problem nun eindimensional darstellt, kann von den Vektoren zu den Betra-
gen derselben Ubergegangen werden.

Wir betrachten nun den Fall i =i(0) = u/2 .

Sind t1 und t2 die Zeiten, wahrend derer die Spannungszeiger geschaltet sind, so muf}, da-

mit der Spannungszeiger konstant bleibt, gelten:

t1=12=T/2
Durch Einsetzen des Wertes von t1 in Gleichung (7.5.2.1) folgt nun:
i(t1) = e 2% + (1-e"T2)*u (7.5.2.3)

Der Maximalwert A der Abweichung ist somit gegeben durch:
A=i(t)-i=(eT2-1)* + (1-e72)*u
A = (e-T2-1)*u/2 + (1-e-T?)*u
A = (1-e72)*u/2 (7.5.2.4)
Im allgemeinen Fall gilt: t1 = i/u *T
Daraus folgt:
A=it1)-i=(e™- 1)+ (1-e-*T)u
A=(1-e ) x(u -i)
Macht man hier den Naherungsansatz 1 - e™'=t , was fiir t<<1 zulassig ist, so erhalt man:
A=1T/u*(u-i)=i"T *(1 - i/u) (7.5.2.5)
Das Maximum von A in Abhangigkeit von i a3t sich mit den Mitteln der Differentialrech-

nung bestimmen:
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dA/di = T/u *(u - 2i) (7.5.2.6)

Das Maximum Amax wird also bei i = u/2 angenommen und hat den in (7.5.2.4) genannten
Wert. Die Funktion A(i) ist symmetrisch bezuglich u/2 .
Unter Verwendung des Naherungsansatzes ergeben sich die folgenden Werte:

Amax = A(Umax/2) = T*Umax/4 (7.5.2.7)

A(u/4) = A(3*Umax/4) = T*Umax*3/16
Es IaRt sich nun der Wert

Amax rel = Amax /lmax (7.5.2.8)
definieren.
Dieser relative "Stromfehler" ist zur Beurteilung der Glte der Spannungszeigersynthese
geeignet. Unter Benutzung des Naherungsansatzes gilt:
Unter Benutzung des Naherungsansatzes gilt:

Anmaxre = T * Umax/(4 * Imax) (7.5.2.9)

7.5.3 Auswirkung der Momentenwelligkeit auf die machanischen GroRen
Die durch Anwendung des 3-Vektorverfahrens hervorgerufenen Momentenschwankungen
sind i.A. nicht sinusférmig. Um eine analytische Berechnung zu erméglichen, wird im folgen-
den dennoch eine sinusformige Momentenschwankung zugrunde gelegt.
Der Momentenverlauf sei gegeben durch:

Mel = Mo + Am*sin(w*t) (7.5.3.1)
Dabei ist w = 2*r*fr = 2*11/T die Kreisfrequenz der Welligkeit und Am die Amplitude.
Die mechanische Gleichung des Systems lautet:

Jxdw/dt = mel — mi (7.5.3.2)
, wobei mi das Lastmoment und J das Tragheitsmoment ist.

Durch Einsetzen von (7.5.3.1) folgt:

dw/dt = 1/J x(mo + Am™*sin (wx*t) - mi) (7.5.3.3)
Durch Integration ergibt sich hieraus:
w = wo + 1/J *x(mo - mi)*t - Am/(J*w) *cos(w*t) (7.5.3.4)

Es wird nun der Maximalwert der Abweichung der Drehzahl w vom ungestdrten Verlauf
betrachtet . Dieser wird mit Aw bezeichnet. Es ergibt sich:

Aw = Am/(J*wrt) = Am*T/(J*21) (7.5.3.5)
Durch nochmalige Integration folgt aus (7.5.3.4):

@ = @o + wo *t + 1/(2*J) x(Mo - Miast )*t? -Am/(J*wr?) *sin(wr*t)
Der Maximalwert A¢@ der Winkelabweichung vom ungestorten Verlauf ist hier gegeben
durch;

A = Am/(J*wT?) = Am*T?/(J*4T? ) (7.5.3.6)
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Mit (7.5.2.7) folgt:
Am = Kmom' *Amax = Kmom *T*Umax / 4

Hieraus erhalt man:

Aw =Kmom *T?*Umax / (8 TrJ) (7.5.3.7)
Far die Schwankungsamplitude des Rotorwinkels ergibt sich:
A@ = kmom *T?*Umax / (16 12 J) (7.5.3.8)

Bei Verwendung eines idealen Drehzahlreglers ist also die infolge des Spannungserzeu-
gungsverfahrens unvermeidbare Welligkeit der Drehzahl proportional zum Quadrat der
verwendeten Taktzeit.

Bei Verwendung eines idealen Lagereglers ist die unvermeidbare Schwankungsamplitude
des Rotorwinkels sogar proportional zur dritten Potenz der verwendeten Taktzeit.

Die verwendete Taktzeit besitzt also eine gro3e Bedeutung fur die erzielbare Gite der Re-
gelung.

Durch die Beziehungen 7.5.3.7 und 7.5.3.8 sind absolute untere Grenzen flr die bei Ver-
wendung von idealen Reglern erzielbare Drehzahlkonstanz und Rotorwinkelkonstanz ge-
geben.

Die tatsachlich erreichbaren Werte werden abhangig von der verwendeten Regeltaktzeit
erheblich Uber diesen Werten liegen. Durch die Beziehung 7.5.3.8 wird eine obere Grenze
fur die noch sinnvolle Winkelauflosung eines zu verwendenden Lageerfassungssystems
gegeben. Um storende Anregungen des Reglers zu vermeiden, kann es sogar sinnvoll
sein, die Winkelauflosung eines gegebenen Lageerfassungssystems nachtraglich auf ei-

nen geeigneten Wert zu begrenzen.

8. PM-SYNCHRONMASCHINE - WERKSTOFFE UND BAUFORMEN

8.1 Magnetwerkstoffe

Als Magnetmaterialien stehen flr den Bau von permanentmagnetisch erregten Synchron-
maschinen die folgenden Materialien zur Verfugung:

1. NeBFe (Neodym-Bor-Eisen),

2. SmCOo (Samarium-Cobalt),

3: Ferritwerkstoffe und

4. AINiCo (Aluminium-Nickel-Kobalt)

Da bei AINiCo-Werkstofen bereits kleine Gegenfelder eine bleibende Entmagnetisierung
hervorrufen, sind sie trotz hoher Remanenzinduktion flir den Einsatz in der permanenter-
regten Synchronmaschine ungeeignet.

Bild 8.1 zeigt die Entmagnetisierungskennlinien von NdBFe, SmCOs und Ferrit im Ver-
gleich (nach /5 HENNEBERGERY/).
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Es wird deutlich, dal} die Selten-Erden-Magnete wesentlich glinstigere magnetische Ei-
genschaften (hohe Remanenzinduktion, hohe Koerzitivfeidstarke) besitzen als Ferrite, was
sie fur den Einsatz in permanenterregten Synchronmaschinen besonders geeignet macht.
Dem Einsatz der Selten-Erden-Magnete stehen die hohen Kosten dieser Materialien ent-
gegen, die den Einsatz nur in hochausgenutzten Maschinen rechtfertigen.

Tabelle 8.1 zeigt die Kennwerte der Magnetmaterialien (nach /8 ORLIK/). Der geringe spe-
zifische Widerstand von SmCOa und NdBFe ist ungunstig, da er die Entstehung von Wir-
belstomen zulalt. Hier wird konstruktiv Abhilfe geschaffen, indem die Magnete aus

mehreren Einzelmagneten aufgebaut werden, die durch Klebung mit nichtleitendem Mate-

I,

b

50 1200 ) t,q 0
ke [y . Ferrif
=—Feldstirke -H 110-15 DM qui

// %7/

'i‘oH

1]

rial gegeneinander isoliert werden /8 ORLIK/.

Bild 8.1 Entmagnetisierungskennlinien einiger Magnetmaterialien (entnommen aus /5 Hen-
neberger/)
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Bild 8.2 Schnittbild eines permanentmagnetisch erregten Synchronmotors

Ferrit SmCO3 |Nd-B-Fe

rel. Permeabilitat -- 1,05 1,05 1,05
Remanenzinduktion B [T] 0,35 0,95 1,25
Koerzitivfeldstarke Hc [KA/m] 265 710 860
spez. Widerstand [ Ohm cm] [>108 5*10°S 15*10-°

Tabelle 8.1 Kennwerte von Hochenergie-Permanentmagneten

8.2 MOTORBAUFORMEN

Permanentmagnetisch erregte Synchronmotoren werden als Stablaufer- und als Schei-
benlaufermotoren gebaut. Diese Bauformen erfullen besonders gut die Forderung nach
geringem Tragheitsmoment des Rotors. Dabei werden Stablaufermotoren haufig fur Ma-
schinenantriebe verwendet, wahrend flr Roboterantriebe Scheibenlaufermotoren bevor-
zugt werden.

Das Motorgehause besteht i.A. aus DruckguRmaterial.

Bei Scheibenlaufermotoren besteht der Rotor aus faserverstarktem Kunststoff, in den die

Magneten eingebettet sind. Wichtig ist hier, dal} der Luftspalt zwischen Rotor und Stator
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so klein wie mdglich gehalten wird. Bild 8.2 zeigt das Schnittbild des permanentmagne-
tisch erregten Motors SE 718 der Fa. Mavilor (aus /12/).

A.1 BEZEICHNUNGEN

Komplexe Werte und GroRen werden durch Unterstreichung gekennzeichnet.

Die zu x konjugiert komplexe Zahl wird mit xx bezeichnet.

Mit Im(x) und Re(x) werden Imaginarteil und Realteil der komplexen GréfRe x bezeichnet.
Der Betrag von x wird mit |x| oder x bezeichnet. Mit arg(x) wird das Argument ar-
ctan(Im(x)/Re(x)) bezeichnet. Matrizen und Vektoren werden durch Fettdruck gekenn-
zeichnet. Die transponierte Matrix zur Matrix A wird mit AT bezeichnet. Die Determinante
der Matrix A wird mit det(A) bezeichnet.

A.2 VERWENDETE FORMELZEICHEN

B magnetische Induktion
H magnetische Feldstarke
S} magnetischer Flufl}
L Induktivitat
R ohmscher Widerstand
Z Impedanz
| Strom

Stromzeiger
u,U Spannung
Uz Zwischenkreisspannung
U,Umax Inkreisradius des Spannungszeigersechsecks

u Spannungszeiger

\% Potential

Zp Polpaarzahl

® Rotorwinkel

t,T Zeit,Zeitdauer

Tel elektrische Zeitkonstante

w Winkelgeschwindigkeit des Rotors
P Leistung

m Drehmoment

mi Lastdrehmoment

Mel elektrisch erzeugtes Moment

J Tragheitsmoment von Rotor und Last

Kemk EMK-Konstante des Motors
Kmom Momentenkonstante des Motors
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ANHANG B: UMRECHNUNG DER KONSTANTEN DES MOTORS
MAVILOR SE 718 IN BEZOGENE GRORBEN

B.1 UMRECHNUNGFORMELN FUR DIE HERSTELLERANGABEN
Da der Sternpunkt der Maschine fur Messungen nicht zuganglich ist, sind die vom Herstel-
ler angegebenen Grolien stets zwischen zwei Motorklemmen gemessen worden.
Die vom Hersteller angegebenen GroRen werden deshalb hier mit dem tiefgestellten Index
H versehen, um sie von den auf den Strang bezogenen Grélien, die hier mit dem tiefge-
stellten Index S versehen werden, zu unterscheiden.
Bei den Groflien kann ferner unterschieden werden zwischen auf die mechanische Dreh-
zahl Wiecu und auf die elektrische Drehzahl wei bezogenen Groflien.
Im folgenden werden flr die einzelnen vom Hersteller angegebenen Grélken die Umrech-
nungsformeln angegeben:
1. Wicklungswiderstand RH gemessen zwischen zwei Maschinenklemmen bei 80 Grad
Celsius. Also gilt fir den Strangwiderstand:

Rs = Rn/2 (B.1.1)
2. Wicklungsinduktivitat Ln . Gemessen zwischen zwei Maschinenklemmen bei einer Fre-
quenz von 1 kHz. Also gilt fur die Stranginduktivitat:

Ls = Ln/2 (B.1.2)
3 .Spannungen Un
Effektivwert gemessen zwischen zwei Klemmen bei sinusformiger Ansteuerung.
Unter der Annahme eines sinusférmigen Verlaufs und einer Phasenverschiebung von 2/31r
erhalt man fur den Effektivwert:

Useff = Un/v3 (B.1.3)
Daraus folgt:

Us.amp = Un/3/2 (B.1.4)
4. Stréme In
Effektivwert des Phasenstroms bei sinusformiger Ansteuerung.

Is.ave = In */\/2 (B.1.5)
5. EMK-Konstante kewmk h
Quotient aus zwischen zwei Klemmen induzierter Spannung EH und mechanischer Dreh-
zahl wmech (in rad/s), wenn der Motor als Generator betrieben wird.

Kemk H = Eh / Wmech (B.1.6)
Mit (B.1.4) erhalt man:

KEMK eff mech = KEMK H /v/3 (B.1.7)
Bezieht man die EMK-Konstante auf die elektrische Drehzahl wei, so ergibt sich:
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KEMK eff el = KEMK eff mech /Zp = KEMK H / (V'3 *Zp ) (B.1.8)
Durch Umrechnung auf Amplitudenwerte folgt:
KEMK amp el = KEMK effel V2 */2 - kemk H / (y/3/2 *2p) (B.1.9)

6. Drehmomentkonstante Rmom b
Quotient zwischen Drehmoment mei und Effektivwert In des Stroms einer Phase bei sinus-
formiger Ansteuerung und dem Lastwinkel 0°. Reibungs-, Eisen- und Zusatzverluste sind
hierbei nicht berucksichtigt.

Kwo mh = mel /lh (B.1.10)

Hieraus folgt mit (B.1.5):
KMoOM s aap = kmom H//2 (B.1.11)
7. Motorkonstante Kh
KhOktmkh*kwomh/Rh (B.1.12)
Die Motorkonstante hat die Einheit Nm/(rad/s).
Die Motorkonstante kann interpretiert werden als das Verhaltnis zwischen dem vom Motor
erzeugten Bremsmoment und der Rotorwinkelgeschwindigkeit bei kurzgeschlossenen Mo-
torklemmen. Dies gilt nur fir Rotorgeschwindigkeiten, bei denen die Induktivitat des Sta-
tors gegenuber seinem Widerstand zu vernachlassigen ist.
Far die umgerechnete Motorkonstante K ergibt sich also:
K=kemk amp el *kM oM S amp /Rs
K = (kemx H /(/(3/2) * Zp) * kmom h//2) /(Rh/2)

K = 2*kemk H * kmom h /IRh / (/3*Zp) (B.1.13)
8. Mechanische Zeitkonstante Ta
Ta=K/J (B.1.14)

Dabei ist J das Tragheitsmoment des Rotors.
Ta ist die Zeit ,in der bei KurzschluRbetrieb die Winkelgeschwindigkeit w vom Anfangswert
wo auf den Wert wo/e abgeklungen ist.
9. Elektrische Zeitkonstante Tel
Tel = L/R (B.1.15)

Sie charakterisiert den Stromanstieg oder -abfall bei einer sprungartigen Spannungsande-
rung.
Es gilt: Tel S~ TelH
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B.2 HERSTELLERANGABEN ZUM MOTOR
Die folgenden Angaben zum Motor Mavilor SE 718 sind dem Datenblatt der Hersteller-

firma /12/ enthommen:

Nenndrehzahl Nmech nenn = 13000 U/min = 50 U/sec
Polpaarzahl Zp = 4

Tragheitsmoment J = 10,4*10"3 kg m?

mech. Zeitkonstante Tmech H = 3,9 msec
Drehmomentkonstante  kmomH = 10,71 Nm/A
EMK-Konstante KEMK H = 10,41 Vs/rad
Wicklungswiderstand Ry = 2,8 Ohm
Wicklungsind. Ln = 8mH

el. Zeitkonstante TelH = 2,8 msec
Motorkonstante Kn = 10,1 N2m? /W
Maximalwerte:

maximale Drehzahl N mech max = 16000 U/min =100 U/sec
Dauerstrom(max) Io H = 5,9A
Impulsstrom(max) liH = 49A

B.3 UMGERECHNETE PARAMETER DES MOTORS
Die gemal} Abschnitt 1 umgerechneten Parameter des Motors SE 718 sind in der folgenden
Ubersicht zusammengestellt.
Mit dem berechneten Wert flr kemk amp et kann nun die Momentenkonstante
kmom = K Ms amp Nach der Beziehung (1.2.7.6) berechnet werden: kmom = 3/2 xzp xkemk
Durch Einsetzen folgt:
kmom =3/2*4%0,084 Vs/rad = 0,504 Nm/A
Der so berechnete Wert stimmt mit dem durch Umrechnung der Herstellerangabe gemalf}

(B.1.11) gewonnenen Wert Uberein

Drehmomentkonstante Kmom,amp = 0,50 Nm/A
EMK-Konstante Kemk,amp = 0,084 Vs/rad
Strangwiderstand Rs =1,4 Ohm
Stranginduktivitat Ls =4 mH
Tragheitsmoment Jel =0,1*10-® kgm?
Motorkonstante K = 0,03 N2m%/W
elektrische Zeitkonstante Zeit-[Tel =2,8 ms
mechanische Zeitkonstante  [Tmech = 3,32 ms
maximale Drehzahl Nel, max =400 U/s

max. Winkelgeschw. Wel, max = 2513 rad/s
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Dauerstrom(max) ID'S anp =8,3A

Impulsstrom(max) lI's amp =69 A

B.4 UMRECHNUNG DER STRANGGROREN IN BEZOGENE GROREN

Bei Betrachtung des Gesamtsystems bestehend aus Motor und Pulswechselrichter darf
der Leitwiderstand Ron der MOS-FET's nicht vernachlassigt werden.

Er hat bei den hier benutzten MOS-FET's BUZ 382 den Wert Ron = 0,40 Ohm.

Dieser Widerstand Ron kann dem Strangwiderstand Rs zugeschlagen werden. Fur die fol-
genden Berechnungen wird deshalb anstelle des Widerstands Rs der Widerstand Rs' ver-
wendet:

Rs'=Rs + Ron=1,4 + 0,4 Ohm = 1,8 Ohm (B.4.1)
Fir die in Kapitel 2 definierten Bezugsgrofien ergeben sich also die folgenden Werte:
wo = Rs'/Ls = 1,8 Ohm/4 mH = 450 rad/s (B.4.2)
Uo = KEMK amp el *Wo
Uo = 0,084 Vs/rad x450 rad/s = 37,8 V (B.4.3)
lo = KEMK amp el /Ls
lo=0,084 Vs/rad/4 mH=21A (B.4.4)
Damit erhalt man folgende bezogene Maximalwerte:
Wmax bez = 2513 rad*s™' / 450 rad*s™ = 5,6 pu (B.4.5)
IDS bez = 8,3 A/ 21 A =0,395 pu (B.4.6)
IS bez= 69 A/ 21 A = 3,286 pu (B.4.7)

Flr das 'bezogene’ Tragheitsmoment J' des Rotors gilt gemaf Gleichung (2.2.11):

J'=JITei?=J *wo?
j' = 0,4*10" kgm? *4502 s"2 = 81 Nm (B.4.8)

Far die 'bezogene' Momentenkonstante kmom ' gilt gemaf’ Gleichung (2.2.6):
kmom*= 3/2 *Zp *kemk?/L
kmom’ = 3/2 x4 x(0,084 Vs/rad)?/4 mH = 10,6 Nm (B.4.9)
Die Zwischenkreisspannung Uzk ist umzurechnen gemal: Uz,bez = Uzk/Uo . FUr die folgen-
den Rechenschritte wird eine Zwischenkreisspannung Uz = 80 V zugrundegelegt.
Damit erhalt man:
Uzk bez = 80 V/37,8 V = 2,12 pu (B.4.10)
FlUr den Betrag Uvez der sechs diskreten Spannungszeiger gilt gemaf (6.2.1):
Ubez = 2/3 *Uz
Hieraus folgt:
Ubez = 2/3 2,12 pu = 1,41 pu (B.4.11)
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Der Radius Umax,bez des Inkreises des Spannungszeigersechsecks, der fur die Realisie-

rung des stationaren Zustands bestimmend ist, hat nach (6.2.3) den Wert:

Umax,bez = \/§ /12 *Upez
Also gilt:
Umax,bez ~ \/§ 12 x1,41 pu=1,22 pu (B412)

B.5 PARAMETER DES MOTORS IN BEZOGENEN GROREN

Die Parameter des Motors SE 718 in bezogenen Grofen sind in der folgenden Ubersicht

zusammengestellt.
laspez = 0,40 pu
lispez  =3,29 pu
Whax,bez = 5,6 pu

J =81 Nm

Kmom' =10,6 Nm
U maxbez =1,22 pu
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