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EINLEITUNG 

Elektrische Servoantriebe wurden in der Vergangenheit meist mit Gleichstrommotoren rea-

lisiert. Gleichstrommotoren besitzen gegenüber Synchron- und Asynchronmotoren den 

Vorteil der leichten Steuerbarkeit. Dem steht der Nachteil der Wartungsbedüftigkeit wegen 

der mechanischen Bürsten und das größere Bauvolumen sowie das größere Trägheitsmo-

ment gegenüber. 

Insbesondere seit der Entwicklung neuer Magnetwerkstoffe mit hoher Remanenzfeldstärke 

gewinnen permanentmagnetisch erregte Synchronmotoren immer größere Bedeutung. 

Diese Entwicklung wird zudem begünstigt durch die rasche Entwicklung auf dem Gebiet 

der Halbleitertechnik, die Transistoren immer größerer Leistung verfügbar gemacht hat. 

Dank der Fortschritte auf dem Gebiet der Mikroelektronik, die.in zunehmendem Maße digi-

tale Bausteine mit großer Leistungsfähigkeit zu zumutbaren Preisen bereitstellt, lassen 

sich auch komplizierte Steuer- und Regelungsaufgaben bewältigen. 

In dieser Arbeit wird ausgehend von den Gleichungen der allgemeinen Synchronmaschine 

unter Benutzung der Raumzeigerdarstellung das Gleichungssystem der permanentmagne-

tisch erregten Synchronmaschine entwickelt. Daneben werden die Gleichungen auch in 

Matrixform dargestellt. 

Durch Einführung bezogener Größen wird eine wesentliche Vereinfachung der Maschinen-

gleichungen erreicht. 

Das Übertragungsverhalten der Synchronmaschine bei konstanter Rotorwinkelgeschwin-

digkeit wird untersucht. 

Das stationäre Verhalten der Synchronmaschine wird untersucht. 

Im Vordergrund stehen hier der Einfluß der Maschinen- und Systemparameter auf die 

Drehmoment-Drehzahl-Charakteristik und die Methoden zur Vorsteuerung des Stromzei-

gers. 

Das dynamische Verhalten des Systems wird abhängig vom zugrunde gelegten Bezugs-

system untersucht. 

Es werden verschiedene Verfahren zur Erzeugung der Strangspannungen durch Pulsbrei-

tenmodulation aus der Zwischenkreisgleichspannung untersucht und miteinander vergli-

chen. 

Ferner werden drei Verfahren zur Spannungszeigersynthese durch Zeigerkombination un-

tersucht. 

Die Störungen der Bahn des Stromzeigers und die damit verbundenen Schwankungen 

des von der Maschine erzeugten Moments infolge des diskontinuierlichen Verlaufs der 

Strangspannungen werden untersucht. 
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Die meisten der hier erzielten Resultate finden sich in der benutzten Literatur. Zu erwäh-

nen sind insbesondere die Arbeiten von Buehler/1/, Grotstollen/3/ und Orlik/8/. 

Nicht aus der Literatur entwickelt wurde die hier durchgeführte Einführung bezogener Grö-

ßen (Kapitel 2), die Ableitungen in den Abschnitten 1.2.6 und 7.3.1 sowie die Berechnun-

gen in Abschnitt 7.5. 

Bezeichnungen 

Komplexe Größen x werden durch Unterstreichung x gekennzeichnet. Die zu x konju-

giert komplexe Größe wird mit x* bezeichnet. 

 

1. Das Maschinenmodell 

1.1 Mathematisches Modell der Synchronmaschine 

1.1.1 Allgemeines 

Die Herleitung der Gleichungen der Synchronmaschine erfolgt nach /I BÜHLER/. 

Es wird eine im Stern geschaltete Synchronmaschine ohne Dämpferwicklungen und ohne 

Nullpunktbelastung zugrunde gelegt. 

Bei der Ableitung werden die Eisenverluste in der Maschine vernachlässigt. Die Sättigung 

der magnetischen Kreise wird nicht berücksichtigt. Die räumlich verteilten Wicklungen wer-

den durch konzentrierte Wicklungen ersetzt. 

1.1.2 Die Spannungsgleichungen 

Im Folgenden wird die Zuordnung der Größen zu den einzelnen Strängen durch die tiefge-

stellten Indices a, b und c gekennzeichnet. Der tiefgestellte Index e kennzeichnet die Zu-

ordnung einer Größe zum Feldkreis. Der für alle Stränge gleiche Widerstand der 

Strangwicklung wird mit R bezeichnet. Der Momentanwert der Strangspannung wird mit u, 

der Momentanwert des Strangstroms mit i bezeichnet. Der Buchstabe V bezeichnet den 

mit dem betreffenden Strang verknüpften Fluß. Die Spannungsgleichungen für die Stränge 

des Stators lauten: 

ua = ia⋆R + dΨa/dt 

ub = ib⋆R + dΨb/dt     (1.1.2.1) 

uc = ic⋆R + dΨc/dt 

Die Spannungsgleichung für die Feldwicklung des Rotors lautet: 

   ue = ie ⋆R + dΨe/dt       (1.1.2.2) 
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1.1.3 DIE EINFÜHRUNG VON RAUMZEIGERN 

Die Stranggrößen sind, wie oben gezeigt, linear voneinander abhängig. Es ist also mög-

lich, die drei Stranggrößen durch zwei voneinander unabhängige Größen auszudrücken. 

Zunächst wird die Konstante a definiert durch: 

   a = ej2π/3      (1.1.3.1) 

Es gelten dann die Beziehungen: 

   a = -1/2 + j√3/2      (1.1.3.2) 

   1 + a + a2 = 0      (1.1.3.3) 

   a2 = a-1 = a⋆      (1.1.3.4) 

 

Sind xa, xb und xc drei Stranggrößen, so wird der zugeordnete Raumzeiger x definiert durch: 

   x = 2/3 ⋆(xa + xb ⋆a + xc ⋆a2)     (1.1.3.5) 

Es werden nun zwei Systeme von Stranggrößen xa, xb, xc und  xa‘, xb‘, xc‘ betrachtet. 

Wir nehmen an, daß die zugeordneten Raumzeiger identisch sind: x' = x. 

Durch Einsetzen der Definitionen und Umformen erhält man nun: 

(xa’- xa) + (xb' - xb)⋆a + (xc’ - xc )⋆a2 = 0 

Durch Subtraktion der Gleichung: (xc '-xc )⋆( 1 + a + a2) = 0 folgt: 

   ( (xa’- xa )- (xc’- xc ) ) + ( (xb’- xb ) - (xc’- xc ))⋆a = 0 

Da der erste Summand reell ist, während der zweite Summand komplex ist, ergibt sich hie-

raus: 

   (xa’- xa) - (xc’- xc) = 0 und (xb’- xb) - (xc’- xc) = 0 

Dies kann einfacher auch in der Form : 

   xa’- xa = xb’- xb = xc’- xc     (1.1.3.6 ) 

geschrieben werden. 

Gilt umgekehrt die Gleichung (1.1.3.6) so kann mit k= xa’- xa geschrieben werden: 

x' = 2/3 ⋆((xa+k) + (xb+k)⋆a + (xc+k)⋆a2) 

Hieraus folgt unter Verwendung von (1.1.3.3) nun x’ = x. 

Zwei Systeme von Stranggrößen besitzen also genau dann den gleichen Raumzeiger, 

wenn die Bedingung (1.1.3.6) gilt. 

Die Bedingung: 

    xa + xb + xc = k      (1.1.3.7) 

, wobei k eine Konstante ist, ist eine hinreichende Bedingung für die Eineindeutigkeit der 

Darstellung von Stranggrößen durch Raumzeiger, wie im Folgenden gezeigt wird. 

Die Notwendigkeit dieser Bedingung für die Eineindeutigkeit der Darstellung ergibt sich un-

mittelbar aus Gleichung (1.1.3.6). 
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Für ein zweites System von Stranggrößen xa',xb',xc’ erhält man bei Gültigkeit von (1.1.3.7) 

die Aussage: 

  xa’- xa = -(xb’- xb) - (xc’- xc)      (1.1.3.8) 

Die Annahme identischer zugeordneter Raumzeiger x' = x liefert wie oben: 

  (xa' - xa ) + (xb' - xb )⋆a + (xc‘ - xc) ⋆a2 = 0 

Mit Gleichung (1.1.3.8) folgt hieraus: 

  - (xb' - xb ) - (xc' - xc) + (xb ' - xb ) ⋆a + (xc' - xc) ⋆a2 = 0 

Durch Bildung von Real- und Imaginärteil erhält man: 

   (xb' - xb ) + (xc' - xc) = 0 

Hieraus folgt, daß die gestrichenen und ungestrichenen Größen identisch sind. 

Im Folgenden wird die schärfere Bedingung: 

   xa + xb + xc = 0      (1.1.3.9) 

zugrunde gelegt. 

Die Größen xa, xb und xc können dann durch Projektion des Raumzeigers x auf die Achsen 

1 , a und a2 gewonnen werden. Dies soll im Folgenden gezeigt werden. Aus der Definition 

des Raumzeigers (1.1.3.5) folgt: 

  Re(x) = 2/3 ⋆ (xa + xb⋆Re(a) + xc⋆Re(a2) ) 

  Re(x) = 2/3 ⋆ (xa + -1/2⋆ (xb + xc ) ) 

Unter Verwendung von (1.1.3.9) folgt hieraus: 

  Re(x) = 2/3 ⋆(xa + 1/2⋆xa) und daraus: 

  xa = Re(x)         (1.1.3.10) 

Analog können die folgenden Beziehungen abgeleitet werden: 

  xb = Re(x⋆a-1) = -0,5⋆Re(x) +√3/2 ⋆Im(x)    (1.1.3.11) 

  xc = Re(x⋆a-2) = -0,5⋆Re(x) - √3/2 ⋆Im(x)    (1.1.3.12) 

Bild 1.1 zeigt das Entstehen der Stranggrößen durch Projektion des Raumzeigers auf die 

Achsen. 

Ist x = x ⋆ e φ in Polarkoordinaten gegeben, so folgt: 

  xa = x ⋆ cos ( φ ) 

  xb = Re(x⋆ej φ - j⋆2π/3) = x⋆ cos (φ - 2π/3)  

  xc = Re(x⋆ej φ - j⋆4π/3) = x⋆ cos (φ - 4π/3)  

Sind umgekehrt die drei Stranggrößen xa, xb und xc gegeben, so lassen sich hieraus die 

Komponenten des zugeordneten Spannungszeigers nach den folgenden Formeln berech-

nen. 

Gleichung (1.1.3.10) ist identisch mit 

   Re(x) = xa       (1.1.3.13) 
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BILD 1.1 Projektion des Raumzeigers auf die Achsen 

 

Aus der Definition des Raumzeigers (1.1.3.5) folgt durch Bildung des Imaginärteils: 

   Im(x) = 2/3 ⋆ Im(xa + xb ⋆a + xc ⋆a2) 

   Im(x) =2/3 ⋆√3/2 ⋆ (xb - xc ) 

   Im(x) =1/√3 (xb - xc )      (1.1.3.14) 

Unter Verwendung der Beziehung (1.1.3.9) lassen sich diverse weitere Formeln herleiten. 

Insbesondere wird erkennbar, daß bereits die Kenntnis von zwei Stranggrößen zur Be-

stimmung des Raumzeigers ausreicht. 

Für die Länge |x| des Raumzeiger gilt: 

   |x|2 = xa
2 + 1/3 ⋆ (xb - xc)2    (1.1.3.15) 

 

1.1.4 DIE SPANNUNGSGLEICHUNG IN RAUMZEIGERDARSTELLUNG 

Aus den Spannungsgleichungen (1.1.2.1) für die Statorstränge erhält man durch Einfüh-

rung von Raumzeigern die komplexe Spannungsgleichung im statorfesten System: 

   u = i⋆R + dΨe/dt      (1.1.4.1) 

In der Literatur wird vielfach das System, in dem eine Größe definiert ist, durch einen der 

Größe zugeordneten Index bezeichnet. 

/Buehler /l/ benutzt hier den hochgestellten Index s zur Kennzeichnung der Größen im 

statorfesten System und den hochgestellten Index r zur Kennzeichnung der Größen im ro-
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torfesten System. Um eine bessere Lesbarkeit der Formeln zu erreichen, wird auf die zu-

sätzliche Indizierung der Größen häufig verzichtet. Es wird dann jeweils explizit angege-

ben, welches Koordinatensystem zugrunde gelegt wird. 

1.1.5 Drehung des KoordinatensystemsS 

Werden bei einer komplexen Gleichung oder Differentialgleichung alle auftretenden Grö-

ßen mit dem Faktor ej φ multipliziert, wobei φ eine reelle Zahl ist, so entspricht dies einer 

Drehung des Koordinatensystems um den Winkel -φ, 

Auf die in der Spannungsgleichung (1.1.5.1) auftretenden Größen kann nun eine Transfor-

mation: 

    xk = x⋆ e-jφ     (1.1.5.1) 

angewendet werden. Der hochgestellte Index k bezeichnet dabei die Größen im gedrehten 

Koordinatensystem. Die Funktion φ = φ (t) wird als differenzierbar vorausgesetzt. 

Die Umkehrtransformation ist gegeben durch: 

    x = xk ⋆e jφ     (1.1.5.2) 

Durch Einsetzen in (1.1.4.1) erhält man: 

uk = ik⋆R + d(Ψk⋆e-jφ)/dt 

Hieraus folgt: 

uk = ik⋆R + dΨk/dt + j⋆dφ/dt ⋆Ψk  (1.1.5.3) 

An dieser Stelle ist eine Betrachtung des Zusammengangs zwischen dem elektrischen 

und dem mechanischen Rotorwinkel erforderlich. Der elektrische Rotorwinkel φel ergibt 

sich aus dem mechanischen Rotorwinkel φmech durch Multiplikation mit der Polpaarzahl zp 

der Maschine: 

     φel = zp ⋆φmech      (1.1.5.4) 

Die elektrische Winkelgeschwindigkeit des Rotors sei hier ohne kennzeichnende Indizie-

rung mit ω bezeichnet. Sie ist definiert durch: 

     ω = dφel/dt     (1.1.5.5) 

Der Zusammenhang zwischen der mechanischen Winkelgeschwindigkeit ωmech und der 

elektrischen Winkelgeschwindigkeit ω ist gegeben durch: 

     ωmech = ω/zp     (1.1.5.6) 

Durch Wahl von  

φ(t) = -ω⋆t+ φo     (1.1.5.7 

in Gleichung (1.1.5.1) erhält man ein Koordinatensystem, das mit dem Rotor umläuft. 

Hierin ist der Winkel φo zunächst noch frei wählbar. Ein solches Koordinatensystem wird 

als rotorfestes System bezeichnet. Die Größen in diesem System werden zur Kennzeich-

nung mit dem hochgestellten Index r versehen. 
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Die Spannungsgleichung im rotorfesten System lautet nun: 

     ur = ir ⋆R + dΨr/dt +jω ⋆Ψr   (1.1.5.8) 

Ein spezielles rotorfestes System ist das d-q-System. Hierbei ist der Winkel φ so gewählt, 

daß die reelle Achse des Koordinatensystems in der Rotorachse liegt. 

Realteil bzw. Imaginärteil einer Größe x im d-q-System werden mit xd bzw xq bezeichnet: 

     x = xd + jxq  

 

1.1.6 HERLEITUNG DER LEISTUNGSGLEICHUNG 

Der Momentanwert P der im Stator umgesetzten elektrischen Leistung ist gegeben durch: 

      P(t) = ua⋆ia + ub⋆ib + uc⋆ic   (1.1.6.1) 

Es soll nun ein Ausdruck für die Leistung unter Verwendung von Raumzeigern abgeleitet 

werden. Die Ableitung erfolgt hier im statorfesten System. Wie man leicht nachprüft, läßt 

sich die Ableitung auch in jedem sich drehenden Koordinatensystem durchführen. 

Durch Einsetzen der Definitionen von u und i. erhält man: 

Re(u*⋆i) = Re (2/3 ⋆(ua + a2⋆ub + a⋆uc) ⋆ 2/3 ⋆(ia + a⋆ib + a2⋆ic)) 

Durch Umformung folgt hieraus: 

Re(u*i) = 4/9 Re(ua ia + ub ib + uc ic + a (uaib +ub ic + ucia) + a2(uaic + ubia + ucib)) 

Mit Re(a) = Re(a2) = -1/2 folgt nun: 

Re(u*i) = 4/9(uaia + ub ib + uc ic -1/2(uaib + ub ic + uc ia + ua ic + ubia + ucib)) 

Re(u*i) = 4/9(uaia + ub ib + uc ic -1/2(ua(ib+ic) + ub(ic+ia) + uc(ia+ib))) 

Unter der Berücksichtigung der Tatsache, daß die Summe der Ströme Null ist, folgt: 

Re(u*i) = 4/9(ua ia + ub ib + Uca ic + 1/2(uaia + ub ib + uc ic ) ) 

Re(u*i) = 4/9 ⋆3/2 ⋆(ua ia + ub ib + uc ic) 

Re(u*i) = 2/3 (uaia + ub ib + uc ic ) 

Durch Einsetzung der Definitionsgleichung der Leistung (1.1.6.1) erhält man: 

     P = 3/2 Re(u*i)       (1.1.6.2)‘ 

 

1.1.7 HERLEITUNG DER MOMENTENGLEICHUNG 

Für die mechanisch abgegebene Leistung Pmech der Maschine gilt: 

    Pmech = mel⋆ωmech      (1.1.7.1) 

Dabei ist mel das elektrisch erzeugte Drehmoment und ωmech die mechanische Winkelge-

schwindigkeit des Rotors. 

Die Herleitung der Gleichung für den Momentanwert des Moments erfolgt im rotorfesten 

System. Die kennzeichnenden Indices werden zur Vereinfachung weggelassen. 
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Ausgangspunkt ist die Spannungsgleichung (1.1.5.8): 

    u = iR + dΨ/dt + jωΨ  

Es wird nun der Einfachheit halber der folgende Fall betrachtet: 

    dω/dt = 0, dΨ/dt =0     (1.1.7.2) 

Die Spannungsgleichung lautet dann: 

    u = iR + jωΨ        (1.1.7.3) 

Durch Multiplikation mit i* erhält man: 

    ui* =Ri⋆i* + jωΨi*     (1.1.7.4) 
Bildet man den Realteil, so ergibt sich: 

    Re(ui*) =Ri2 + ω*Im(Ψ*i) 

Nach Multiplikation dieser Gleichung mit dem Faktor 3/2 folgt: 

    3/2 Re(ui*) = 3/2 Ri2 + 3/2 ω Im(Ψ*i)   (1.1.7.5) 

Die Verlustleistung Pv im Stator ist gegeben durch: 

Pv = R*(ia2 + ib2 + ic2) = 3/2 *R*i2    (1.1.7.6) 

Durch Einsetzen von (1.1.7.6) in (1.1.7.5) erhält man: 

    P = Pv + 3/2 ω Im(Ψ*i)     (1.1.7.7) 

Unter den gemachten Voraussetzungen gilt: 

    P = Pv + Pmech 

Durch Vergleich mit Gleichung (1.1.7.7) folgt: 

    Pmech = 3/2 ωIm(Ψ*i)      (1.1.7.8) 

Unter Verwendung der Gleichung (1.1.7.1) erhält man: 

    mel = 3/2 *zP*Im(Ψ*i)      (1.1.7.9) 

Die Ableitung der Drehmomentengleichung läßt sich auch für den allgemeinen Fall durch-

führen. Dann tritt in der Spannungsgleichung der Term dΨ/dt hinzu. 

Durch Multiplikation mit i*, Realteilbildung und Multiplikation mit 3/2 wird hieraus der Term: 

    3/2*Re(dΨ/dt ⋆ i*) 

Die Leistungsbilanz lautet in diesem Falle: 

    P = Pv + Pmag + Pmech 

Dabei ist Pmag = dWmag/dt die aus der Änderung der magnetischen Energie in der Ma-

schine resultierende Leistung. 

Eine genauere Untersuchung liefert nun die Identität 

    Pmag = 3/2*Re(dΨ/dt ⋆ i*)     (1.1.7.10) 

Infolge dieser Tatsache erhält man auch im Fall dω/dt ≠ 0 das oben angegebene Resultat 

für den Momentanwert des Drehmoments. 
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Die Gleichung für den Momentanwert des Drehmoments wurde im rotorfesten Koordina-

tensystem abgeleitet.  

Führt man nun eine Drehung des Koordinatensystems gemäß:x' = x eja durch, so folgt: 

Ψ’*⋆ i' = Ψ’*e-ja*ieja = Ψ*⋆ i 

Der Ausdruck Ψ*⋆i bleibt also bei Drehungen des Koordinatensystems invariant. 

Hieraus ergibt sich, daß die Formel (1.1.7.9) für den Momentanwert des Drehmoments in 

jedem Koordinatensystem Gültigkeit besitzt. 

1.2 LINEARISIERUNG DES MODELLS DER SYNCHRONMASCHINE 

1.2.1 MASCHINENGLEICHUNGEN 

Zunächst sollen an dieser Stelle die Formeln zusammengestellt werden, die das System 

im rotorfesten d-q-System beschrieben: 

    u = i⋆R + dΨ/dt + jωΨ      (1.2.1.1) 

    ue = Re⋆i + dΨe/dt     (1.2.1.2) 

    P = 3/2 *Re(u⋆i*)      (1.2.1.3) 

    mel = 3/2 *zp*Im(Ψ*⋆i)      (1.2.1.4) 

Durch Aufspaltung der Spannungsgleichung (1.2.1.1) in Realteil und Imaginärteil folgt: 

   ud = id *R + dΨd/dt - ω⋆Ψq    (1.2.1.5) 

    Uq = iq *R + dΨq/dt + ω⋆Ψd 

1.2.2 LINEARER ANSATZ 

Die Flüsse Ψ und Ψe sind im allgemeinen Falle nichtlineare Funktionen der Ströme und 

des Rotorwinkels φ: 

 ⋆ *   Ψ = Ψ (i,ie,φ)       (1.2.2.1) 

    Ψe = Ψe(i,ie,φ) 

Die Nichtlinearität bezüglich der Ströme wird wesentlich verursacht durch das nichtlineare 

Verhalten der verwendeten Magnetmaterialien. 

 Die Abhängigkeit des mit der Erregerwicklung verknüpften Flusses vom Rotorwinkel ent-

steht durch Inhomogenitäten des Rotors und des Stators. 

Es wird nun das rotorfeste d-q-System zugrunde gelegt. 

In diesem Koordinatensystem können die nichtlinearen Funktionen Ψd, Ψq und Ψe lineari-

siert werden. Durch Linearisierung erhält man die Beziehungen: 

 Ψd  = Lhd * (id + ie ) +Lσ1 ⋆id  = Ld ⋆id + Lhd ⋆ie    (1.2.2.2) 

 Ψq  = Lhq* iq + La1 ⋆iq= Lq ⋆iq      (1.2.2.3) 

  Ψe = Lhd * (id +ie) +Lσe ⋆ie =  Le ⋆ie+Lhd ⋆id     (1.2.2.4) 
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Die hierin auftretenden mit L bezeichneten Größen haben die Dimension von Induktivitä-

ten. Sie können als den einzelnen Wicklungssystemen zugeordnete konstante Induktivitä-

ten betrachtet werden. 

Die mit dem tiefgestellten Index h bezeichneten Größen werden dabei als Hauptinduktivi-

täten bezeichnet, während die mit dem tiefgestellten Index σ bezeichneten Größen als 

Streuinduktivitäten bezeichnet werden. 

Die Bestimmung der Werte der Induktivitäten kann auf verschiedene Weise erfolgen. Steht 

die Konstruktion einer Maschine im Vordergrund, so wird man sie nach verschiedenen nu-

merischen Verfahren ausgehend vom vorgesehenen konstruktiven Aufbau und den ver-

wendeten Materialien bestimmen. 

Handelt es sich um eine vergebene Maschine, so wird man sie den Herstellerangeben ent-

nehmen oder durch Messungen nach in der Literatur beschriebenen Verfahren bestim-

men. 

Durch Einsetzen der für die Flüsse abgeleiteten Beziehungen (1.2.2.2 bis 1.2.2.4) in die 

Spannungsgleichungen (1.2.1.5) erhält man das folgende Gleichungssystem: 

   ua = R⋆id + Ld ⋆did/dt + Lhq⋆ die/dt - ω⋆Lq ⋆iq    (1.2.2.6) 

   Uq = R⋆iq + Lq ⋆diq / dt + W⋆ (Ld ⋆id + Lhd ⋆ie)  ^  (1.2.2.7) 

   Ue = Re ⋆ie. + Le ⋆die/dt + Lhd ⋆did/dt     (1.2.2.8) 

1.2.3 Die linearisierte Momentengleichung 

Der FLußzeiger Ψ ist nach (1.2.1.2 und 1.2.1.3) gegeben durch: 

    Ψ  = Ψd + jΨq = Ld ⋆id + Lhd ⋆ie + j⋆Lq ⋆iq 

Setzt man dies in die Momentengleichung (1.2.1.4): mel = 3/2*zp*Im(Ψ*⋆i) ein, so erhält 

man: 

   mel = 3/2⋆Zp⋆(Ψd⋆iq “ Ψq⋆id) 

   mel = 3/2⋆Zp⋆((Ld⋆id +Lhd⋆ie)⋆iq - Lq ⋆iq ⋆id ) 

   mel = 3/2⋆Zp⋆ (Lhd⋆ie⋆iq + (Ld - Lq) ⋆iq ⋆id)    (1.2.3.1) 

Das Moment mel kann nun in zwei Anteile zerlegt werden: 

   mel = mel ,vp + mel ,reak 

Dabei ist 

   mel ,vp = 3/2⋆Zp⋆Lhd ⋆ie ⋆iq     (1.2.3.2) 

das VolIpolmoment der Maschine und 

   mel ,reak = 3/2⋆Zp⋆(Ld - Lq) ⋆iq⋆id     (1.2.3.3) 

das Reaktionsmoment der Maschine. 

Das Reaktionsmoment tritt bei gegebenem Vollpolmoment um so mehr in Erscheinung, je 
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größer |id| ist. Angemerkt sei hier, daß diese Tatsache bei einer nahezu symmetrischen 

Maschine in Betriebsbereichen, in denen eine Vorsteuerung des Stromzeigers notwendig 

ist, nachteilige Auswirkungen hat. 

1.2.4 Gleichungen der Maschine mit Vollpoleigenschaften 

Bei einer Maschine mit Vollpoleigenschaften gilt: 

  Lhd = Lhq = Lh und Ld = Lq = L 

Unter Berücksichtigung dieser Tatsache vereinfachen sich die Spannungsgleichungen für 

den Stator zu: 

  ud = R⋆id + L⋆did/dt + Lh ⋆die/dt - ω⋆L⋆iq    (1.2.4.1) 

  uq = R⋆iq + L⋆diq/dt + ω⋆(L⋆id + Lh⋆ie)    (1.2.4.2) 

Während bei den die allgemeine Synchronmaschine beschreibenden Gleichungen 

(1.2.2.6) und (1.2.2.7) eine vernünftige Darstellung in komplexer Form nicht möglich ist, 

können die Gleichungen im hier betrachteten Fall wieder in komplexer Form dargestellt 

werden: 

   u = R⋆i + L⋆di/dt + jω⋆L⋆i + Lh ⋆die/dt +jωLh ⋆ie    (1.2.4.3) 

Die Spannungsgleichung für den Feldkreis lautet: 

   Ue = Re ⋆ie + Le ⋆die /dt + Lh ⋆did/dt    (1.2.4.4) 

Die Momentengleichung vereinfacht sich durch das Verschwinden des Reaktionsmoments 

zu: 

   mel = 3/2 ⋆Zp ⋆Lh ⋆ie ⋆iq      (1.2.4.5) 

 

1.2.5 DIE PERMANENTMAGNETISCH ERREGTE SYNCHRONMASCHINE 

Bei der permanentmagnetisch erregten Synchronmaschine, die im Folgenden auch als 

PM-Synchronmaschine bezeichnet wird, verliert die Spannungsgleichung (1.2.2.8) für den 

Feldkreis ihren Sinn, da sie keine Entsprechung in der Realität besitzt. 

An ihre Stelle kann die Beziehung: 

   ie = const       (1.2.5.1) 

treten. 

Dadurch vereinfachen sich die Gleichungen (1.2.2.6) und (1.2.2.7) zu: 

    Ud ⋆R⋆id + La ⋆dia/dt - ω⋆Lq ⋆iq    (1.2.5.2) 

   Uq = R⋆iq + Lq ⋆diq/dt + ω⋆(Ld⋆id + Lh d *ie )  (1.2.5.3) 

Im Falle einer permanentmagnetisch erregten Synchronmaschine mit Vollpoleigenschaften 

kann von der Gleichung (1.2.4.3) ausgegangen werden. Diese vereinfacht sich zu: 

   u = R*i + L*di/dt + jω*L*i + jωLh *ie    (1.2.5.4) 
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1.2.6 Berücksichtigung der Beeinflussung der Felder im Maschinenmodell 

Unter Feldschwächung soll in diesem Abschnitt die Beeinflussung des Rotorfeldes durch 

die Statorfelder verstanden werden. Diese erfolgt bei der permanentmagnetisch erregten 

Synchronmaschine entsprechend der Steigung der B-H-Kennlinie. 

Bei der Untersuchung des Einflusses der Feldschwächung gehen wir von einer Maschine 

mit Vollpoleigenschaften aus. 

Die Beziehung ie = const vernachlässigt den Einfluß der Feld-Schwächung, da hier unab-

hängig von Betrag und Richtung des Stromzeigers i der vom Rotor ausgehende Fluß stets 

als konstant angenommen ist. 

Die Berücksichtigung der Schwächbarkeit des Feldes durch die d- Komponente der Stator-

stroms kann durch folgenden linearisierten Ansatz berücksichtigt werden: 

I     e = ie0 + k*id     (1.2.6.1) 

Dabei ist k eine Konstante, die abhängig von der Steigung der B- H-Kennlinie die 

Schwächbarkeit des Feldes kennzeichnet. 

Durch Einsetzen der Beziehung (1.2.6.1) in die Gleichungen (1.2.4.1) und (1.2.4.2) erhält 

man: 

   ud = R*id + L*did/dt + Lh *k⋆did/dt - ω*L*iq 

   uq = R*iq + L*diq/dt + ω*(L*id + Lh*ie0 + Lh*k*id) 

Hieraus folgt: 

   Ud = R*id + (L + Lh*k)*did/dt - ω*L*iq    (1.2.6.2) 

   Uq = R*iq + L*diq/dt + ω*((L + Lh*k)*id + Lh *ieo ) 

Definiert man nun die Induktivitäten: 

   Ld ' = L + Lh *k und Lq ' = L     (1.2.6.3) 

, so folgt durch Einsetzen in die Gleichungen (1.2.6.2): 

   Ud = R*id + Ld' *did/dt - ω*Lq'*iq      (1.2.6.4) 

   Uq = R*iq + Lq' *diq/dt + ω ⋆(Ld' ⋆id + Lh⋆ieo) 

Durch Vergleich mit den Gleichungen (1.2.5.2) und (1.2.5.3) erkennt man, daß bei Berück-

sichtigung der Feldschwächung aus der Maschine mit Vollpoleigenschaften eine unsym-

metrische Maschine wird. Bei dieser Maschine hat die Ersatzinduktivität Ld' einen 

gegenüber der Induktivität Lq ' = L erhöhten Wert. 

Die geringe Steigung der B-H-Kennlinie der verwendeten Magnetmaterialien bedingt, daß 

die auf L = Lq' bezogene Differenz zwischen Lq' und Lq' einen betragsmäßig geringen Wert 

hat. Es wird also i.A. zulässig sein, die Unsymmetrie der Maschine zu vernachlässigen 

und die Maschine als Vollpolmaschine zu behandeln. Auch in der vorliegenden Arbeit wird 
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die Schwächbarkeit der Felder der Permanentmagnete durch die Felder des Stators ver-

nachlässigt. 

1.2.7 Systemgleichungen der PM-Synchronmaschine mit Vollpoleigenschaften 

Für die permanentmagnetisch erregte Synchronmaschine mit Vollpoleigenschaften gelten 

im rotorfesten System die folgenden Gleichungen: 

    u = R⋆i + L⋆di/dt + jω⋆L⋆i + jω⋆Lh ⋆ie   (1.2.7.1) 

     mel = 3/2 ⋆zp ⋆Lh ⋆ie ⋆iq      (1.2.7.2) 

    P = 3/2 ⋆Re(u⋆i*)     (1.2.7.3) 

Der gedachte konstante Strom ie wird nun durch die EMK-Konstante kEMK ersetzt: 

    kEMK = Lh⋆ie      (1.2.7.4) 

Durch Einsetzen in die Systemgleichungen erhält man: 

    u = R⋆i + L⋆di/dt + jω⋆L⋆i + jω⋆kEMK   (1.2.7.5) 

    mel = 3/2 ⋆zp ⋆kEMK⋆iq      (1.2.7.6) 

 

Der letzte Summand in Gleichung (1.2.7.5) wird auch als Polradspannung Up bezeichnet, 

so daß gilt: 

    Up = jω⋆kEMK      (1.2.7.7) 

In Komponentenschreibweise lautet die Gleichung (1.2.7.5): 

.   Ud = R⋆id + L⋆did/dt - ω⋆L⋆iq    (1.2.7.8) 

    Uq = R⋆iq + L⋆diq/dt + ω⋆(L⋆id + kEMK)   (1.2.7.9) 

Bild 1.2 zeigt das Strukturbild der permanentmagnetisch erregten Synchronmaschine mit 

Vollpoleigenschaften im d-q-System. 
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BILD 1.2 Strukturbild der permanentmagnetisch erregten Synchronmaschine im rotorfes-
ten System 

Bei verschiedenen Autoren - siehe z.B. /8 ORLIK/ - findet sich die Spannungsgleichung 

auch in der Darstellung im statorfesten System. Diese kann aus der Spannungsgleichung 

im rotorfesten System durch Anwendung der Koordinatentransformation gewonnen wer-

den. Im statorfesten System lautet die Spannungsgleichung: 

    u = R⋆i + L⋆di/dt + jω⋆kEMK⋆ejφ    (1.2.7.8) 

Dabei ist φ der elektrische Rotorwinkel. 

Die Momentengleichung nimmt im statorfesten System die folgende Gestalt an: 

    mel = 3/2 ⋆zp ⋆kEMK ⋆Im(i⋆e-jφ)    (1.2.7.9) 
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1.3 MASCHINENMODELLE IN MATRIZENDARSTELLUNG 

1.3.1 HERLEITUNG DER MASCHINENGLEICHUNGEN 

Verschiedentlich finden sich in der Literatur Maschinenmodelle, bei denen auf die Einfüh-

rung eines komplexen Raumzeigers verzichtet wird. Anstelle des komplexen Raumzeigers 

tritt dann ein Vektor mit zwei Komponenten. Der Zusammenhang zwischen diesem Vektor 

und den drei Stranggrößen wird durch eine Transformationsmatrix hergestellt. 

Diese Transformationsmatrix kann aus der komplexen Darstellung durch Aufspaltung in 

Real- und Imaginärteil gewonnen werden. Seien wieder xa , xb und xc die den Strängen zu-

geordneten Größen. Die durch Aufspaltung gewonnenen Größen im Zwei-Achsen-System 

seien mit xα und xβ bezeichnet. 

Dann gilt: 

    x = xα + jxβ      (1.3.1.1) 

Durch Anwendung der Definitionsgleichung (1.1.3.5) für den Raumzeiger folgt: 

    xα = 2/3 ⋆(xa - 1/2 ⋆(xb + xc) ) 

    xα = 2/3 ⋆xa - 1/3 ⋆(xb + xc )    (1.3.1.2) 

und 

   xβ = 2/3 ⋆√3/2 ⋆(xb - xc ) 

 +   xβ = 1/√3 ⋆(xb - xc)     (1.3.1.3) 

Die Gleichungen (1.3.1.2) und (1.3.1.3) lassen sich unter Benutzung der Matrizenschreib-

weise wie folgt zusammenfassen: 

   (  
xα
xβ) =(

2/3 −1/3 −1/3

0 1
√3

⁄ − 1
√3

⁄
) ⋆ (

xa
xb
xc

)     (1.3.1.4) 

Zu xα  und xβ kann nun eine dritte Komponente x0 hinzugefügt werden. Die Matrix kann so 

zu einer quadratischen Matrix A erweitert werden, daß die Komponente x0 unter der Be-

dingung  ‚ 

    xa + xb + xc =0      (1.3.1.5) 

 verschwindet. Damit dies gewährleistet ist, müssen alle Matrixelemente der dritten Zeile 

den gleichen Wert besitzen. Wählt man diesen Wert zu √2/3, so erhält man: 

Durch diese Wahl wird erreicht, daß die Transformationsmatrix A in einem erweiterten 

Sinne orthogonal wird. Hiermit ist gemeint, daß die Beziehung: 

    A ⋆AT = k ⋆E       (1.3.1.7) 

gilt, wobei k eine Konstante und E die Einheitsmatrix ist. 

Bei der Wahl des Wertes für die Elemente der dritten Zeile der Matrix (1.3.1.6) werden 

auch andere Wege beschritten. 
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Bei Gültigkeit der Beziehung (1.3.1.7) erhält man für die inverse Matrix A-1 : 

    A-1 = 1/k ⋆AT    ^    (1.3.1.8) 

Im hier betrachteten Fall ist k = 2/3.      (1.3.1.9) 

Anstelle der in Gleichung (1.3.1.6) definierten Matrix A kann auch eine Matrix A' verwendet 

werden, die definiert ist durch: 

    A' = a*A      (1.3.1.10 

,wobei a eine Konstante ist 

Für die inverse Matrix A'-1 gilt dann: 

    A‘-1 = 3/2 ⋆1/a2 ⋆A'T = 3/2 ⋆1/a ⋆AT    (1.3.1.11) 

Die Matrix A' ist gemäß Definition genau dann orthogonal, wenn A’-1 = A'T ist. 

Demgemäß ist die durch Gleichung (1.3.1.10) definierte Matrix genau dann orthogonal, 

wenn a = √𝟑/𝟐 ist. 

Dieser Sachverhalt ist in /13 WEH, S.65/ beschrieben. 

Die zugehörige orthogonale Matrix lautet: 

   A‘ = √3/2 ⋆(

1 0 1/√2

−0.5 1/2 ∗ √3 1/√2

−0,5 −1/2 ∗ √3 1/√2

)     (1.3.1.12) 

Sämtliche bisher abgeleiteten komplexen Gleichungen können nun auch - nach Zerlegung 

in Real- und Imaginärteil - in der Komponentendarstellung geschrieben werden. 

So lautet z.B. die allgemeine komplexe Spannnungsgleichung (1.1.16) in Komponenten-

darstellung: 

    uα= iα ⋆R + dΨα/dt      (1.3.1.13) 

    uß = iß ⋆R + dΨß/dt 

Aus der Leistungsgleichung (1.1.20) erhält man durch Anwendung der Komponenten-

schreibweise: 

    P = 3/2 (uα⋆iα + uβ⋆iβ)      (1.3.1.14) 

1.3.2 Leistungsvariante und leistungsinvariante Transformationen 

Die Transformation eines dreisträngigen Systems in ein zweisträngiges System kann nun 

nie derart erfolgen, daß sämtliche beim dreisträngigen System gültigen Gesetze auch 

beim zweisträngigen System Gültigkeit besitzen. 

Die durch Gleichung (1.3.1.4) beschriebene Transformation ist, wie die Leistungsgleichung 

(1.3.1.14) zeigt, leistungvariant. Zur Korrektur muß hier der Faktor 3/2 benutzt werden. 

Bei Verwendung der orthogonalen Transformation (1.3.1.12) gilt: 

   P = ua ⋆ia + ub⋆ib + uc⋆ic = u3
T ⋆i3 = (A’-1⋆U2)T ⋆A'-1⋆i2 

Hieraus folgt: 
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     P = U3
T⋆i3 = U2

T⋆i2 

Hierbei sind die Vektoren im dreisträngigen System durch den tiefgestellten Index 3 und 

die Vektoren im zweisträngigen System durch den tiefgestellten Index 2 gekennzeichnet. 

Die orthogonale Transformation ist also wegen der Orthogonalität der verwendeten Matri-

zen eine leistungsinvariante Transformation. 

Es wird nun im dreiphasigen System ein sinusförmiger zeitlicher Verlauf der Stranggrößen 

betrachtet gemäß: 

     xa(t) = a ⋆sin(ωt) 

     xb(t) = a ⋆sin(ωt + 2π/3)     (1.3.2.1) 

     xc(t) = a ⋆sin(ωt + 4π/3) 

Im zweiphasigen wird ein entsprechender Verlauf zugrunde gelegt: 

     XA = a⋆sin(ωt) 

     XB = a⋆sin(ωt + π/2)    (1.3.2.2) 

Die durch Gleichung (1.3.1.4) beschriebene Transformation ist nun so beschaffen, daß die 

Amplituden im zweiphasigen und im dreiphasigen System gleich groß sind. Es gilt also 

hier a = a’. Bei der orthogonalen Transformation (1.3.1.12) gilt hingegen: a' = √3/2 ⋆a. 

Diese Tatsache wird in /13 WEH/ auf Seite 65 erwähnt. 
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2. MASCHINENGLEICHUNGEN IN BEZOGENEN GRÖßEN 

2.1 Bezogenes Größensystem 

Bei der Behandlung der Synchronmaschine werden in der Literatur häufig bezogene Grö-

ßen benutzt. Durch die Einführung bezogener Größen sollen die Ergebnisse der Untersu-

chungen von den Eigenschaften einer bestimmten Maschine losgelöst werden. Hierdurch 

wird der Vergleich der Eigenschaften von Maschinen unterschiedlicher Größe und Bauart 

vereinfacht. 

Bei der Einführung bezogener Größen werden häufig die Nenndaten der Maschine als Be-

zugsgrößen benutzt. Derart wird z.B. in /I BUEHLER/ verfahren. Im hier betrachteten Fall 

der Synchronmaschine als Servomotor existieren Nenndaten im herkömmlichen Sinne 

nicht. Die Bezugsgrößen werden hier deshalb so gewählt, daß die Maschinengleichungen 

eine möglichst einfache Form annehmen. Im Folgenden werden zunächst die Bezugsgrö-

ßen definiert und anschließend die Maschinengleichungen in bezogenen Größen abgelei-

tet. Als Bezugsgrößen werden die folgenden Größen verwendet: 

1. Die elektrische Zeitkonstante Tel 

     Tel = L/R     (2.1.1.) 

2. Die Winkelgeschwindigkeit ωo 

     ωo = R/L = 1/Tel      (2.1.2) 

Bei der Winkelgeschwindigkeit ωo herscht zwischen Spannung und Strom in der Maschine 

eine Phasendifferenz von 45 Grad.  

Deshalb wird sie auch als 45°-Winkelgeschwindigkeit bezeichnet. 

3. Die Bezugsspannung Uo 

    Uo = kEMK⋆ ωo       (2.1.3) 

Uo ist der Betrag der Spannung, die vom Rotor im Stator induziert wird, wenn die Ma-

schine mit der Winkelgeschwindigkeit ωo betrieben wird. 

4. Der Bezugsstrom Io  

      Io = kEMK/L = kEMK⋆ωo/(L⋆ωo)   (2.1.4) 

Io ist der Betrag des Stroms, der bei der Winkelgeschwindigkeit ω =  im Stator fließt, 

wenn die Maschine im Kurzschlußbetrieb betrieben wird. Für den Betrag I45 des Stroms, 

der bei ω = ωo im Kurzschlußbetrieb fließt, gilt:I45 = I0/√2. 

5. Die Bezugsimpedanz Z0 : 

     Z0 = R       (2.1.5) 

Zo ist die Impedanz eines Statorstranges bei ω = 0. Für den Betrag Z45 der Statorimpe-

danz bei ω = ω0 gilt Z45 = Z0 ⋆ √2. 
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Aus den Größen ω, u, i., Z und t werden nun die entsprechenden bezogenen Größen ge-

bildet. Die bezogenen Größen werden dabei durch Apostrophe von den ursprünglichen 

Größen unterschieden: 

    ω' = ω/ω0= ω ⋆L/R     (2.1.6) 

    u' = u/U0      (2.1.7) 

    i' = i/I0       (2.1.8) 

    Z' = Z/Z0 =(R+j ωL)/R = 1 + jω'    (2.1.9) 

    t' = t/Tel       (2.1.10) 

 

2.2 Umrechnung der Maschinengleichungen in bezogene Größen 

Für die permanentmagnetisch erregte Synchronmaschine sind in Kapitel 1 die folgenden 

im rotorfesten System gültigen Gleichungen abgeleitet worden: 

    u = R⋆i + L⋆di/dt + jωL⋆i + jω⋆kEMK    (2.2.1) 

    mel = 3/2 ⋆zp ⋆kEMK⋆iq     (2.2.2) 

    J ⋆dω/dt = mel - ml     (2.2.3) 

Dabei ist J das gemeinsame Trägheitsmoment von Rotor und Last und ml das Lastmo-

ment. 

Die Definitionsgleichungen (2.1.6) bis (2.1.9) für die bezogenen Größen werden nun nach 

den ursprünglichen Größen aufgelöst und in die Gleichung (2.2.1) eingesetzt: 

   u0⋆u'= R⋆i0 ⋆i' + L⋆I0⋆di'/dt + jω⋆L⋆I0⋆i' + jω0⋆ω'⋆kEMK 

Aus dieser Gleichung folgt nach Division durch u0 unter Verwendung der Definitionen der 

Bezugsgrößen die Gleichung: 

   u'= i' + ω0
-1⋆di'/dt + jω'⋆i' + jω'      (2.2.4) 

Aus Gleichung (2.2.2) folgt: 

   mel = 3/2 ⋆zP ⋆kEMK⋆I0⋆iq'= 3/2 ⋆zP ⋆kEMK
2/L ⋆iq'    (2.2.5) 

Es wird nun die bezogene Momentenkonstante kMOM‘ eingeführt: 

    kMOM' = 3/2 ⋆ zP ⋆kEMK
2/L     (2.2.6) 

Sie hat die Dimension des Drehmoments. 

Hiermit folgt aus (2.2.5): 

.  m el = kMOM' ⋆iq'        (2.2.7) 

Die Gleichung (2.2.4) kann noch vereinfacht werden, indem anstelle der Zeit t die bezo-

gene Zeit t' benutzt wird. Hierzu ist in (2.2.4.) die Ableitung nach t durch die Ableitung nach 

t' zu ersetzen. Für die zeitliche Ableitung einer beliebigen Größe x gilt: 

   dx/dt = dt’/dt ⋆dx/dt' = 1/Tel ⋆dx/dt'     (2.2.8) 
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Unter Berücksichtigung dieser Beziehung folgt aus (2.2.4) die Gleichung: 

   u' = i' + di'/dt+ jω'⋆i' + j ω'      (2.2.9) 

Bei Verwendung der bezogenen Zeit t' ist auch die Momentengleichung (2.2.3) zu transfor-

mieren. Aus Gleichung (2.2.3) erhält man: 

   J⋆ω0 ⋆dω’/dt = mel - ml 

   J⋆ ω0/Tel ⋆dω'/dt' = mel - ml 

  J/Tel
2 ⋆dω'/dt‘ = mel - ml       (2.2.10) 

Das bezogene Trägheitsmoment J wird nun definiert durch: 

   J‘= J/Tel
2        (2.2.11) 

Die Konstante J‘ hat wie bereits die Momentenkonstante kMOM' die Dimension des Dreh-

moments. 

Hiermit geht Gleichung (2.2.10) über in: 

   J‘⋆dω'/dt‘ = mel - ml       (2.2.12) 

Die Gleichungen (2.2.9), (2.2.7) und (2.2.12) beschreiben das Verhalten des Systems in 

bezogenen Größen. 

Für die Leistung ergibt sich in bezogenen Größen der folgende Ausdruck: 

   P = 3/2 ⋆Uo⋆Io ⋆Re(u'⋆i'*) 

P = 3/2 ⋆kEMK
2⋆R/L2 ⋆Re(u'⋆i’*)     (2.2.13) 

Das Verhalten der permanentmagnetisch erregten Synchronmaschine wird bei der Dar-

stellung in nicht bezogenen Größen durch eine Vielzahl von Parametern bestimmt. 

Bei der Darstellung in bezogenen Größen reichen einige wenige Parameter zur Beschrei-

bung des Verhaltens der Maschine aus. 

Es sind dies die folgenden Parameter: 

1. Die zur Verfügung stehende Spannung: 

    Umax’ = Umax/U0     (2.2.14) 

Die zur Verfügung stehende Spannung wird bestimmt durch die verwendete Zwischen-

kreisspannung und begrenzt durch die Spannungsfestigkeit der Maschine. 

2. Der zulässige Statorstrom: 

    imax’ = imax/T0      (2.2.15) 

Der zulässige Strom imax wird bestimmt durch die aufgrund der ohmschen Verluste auftre-

tende Erwärmung der Maschine. Zu unterscheiden ist hier noch zwischen dem kurzzeitig 

zulässigen Strom und dem langzeitig zulässigen Strom. 

3. Die bezogene Momentenkonstante: 

    kMOM‘ = 3/2 ⋆zp ⋆kEMK
2/L     (2.2.16) 
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Bei der Betrachtung des Gesamtsystems sind ferner noch das bezogene Trägheitsmo-

ment J‘ und die maximale Winkelgeschwindigkeit ωmax, bis zu der der Motor betrieben wer-

den soll, von Bedeutung. 

In den folgenden Kapiteln wird bei der Untersuchung des Systems stets dieses be-

zogene Größensystem benutzt. 

2.3 Zusammenstellung der Maschinengleichungen im rotorfesten Sys-
tem in bezogenen Größen 
Zur besseren Übersicht sind hier die Gleichungen zusammengestellt, die das Verhalten 

der Maschine bei Verwendung bezogener Größen beschreiben: 

    u' = i' + di'/dt+ jω'⋆i' + j ω'    (2.3.1) 

    m el = kMOM' ⋆iq'      (2.3.2) 

    J‘⋆dω'/dt‘ = mel - ml     (2.3.3) 

Bild 2.1 zeigt das zu Gleichung (2.3.1) gehörende Spannungszeigerdiagramm. Die Apo-

strophe sind darin weggelassen. Bild 2.2 zeigt das Spannungszeigerdiagramm bei Vorlie-

gen des stationären Zustands (di'/dt‘ = 0). Die strichlierte Linie stellt dabei bei 

vorgegebenem i die Ortskurve des zugehörigen Spannungspunkts in Abhängigkeit von ω 

dar. 

 

Bild 2.1 Spannungszeigerdiagramm in bezogenen Größen 
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Bild 2.2 Spannungszeigerdiagramm für den stationären Zustand in bezogenen Größen 

 

2.4 Maschinengleichungen im rotorfesten System in bezogenen Größen 

Aus der Spannungsgleichung (2.3.1) im rotorfesten System erhält man durch Anwendung 

der Transformation: 

     x's = x'r⋆ejφ     (2.4.1) 

die Spannungsgleichung im statorfesten System. Dabei ist x eine vektorielle Größe. Die 

hochgestellten Indices s bzw. r bezeichnen die Größen im statorfesten bzw. im rotorfesten 

System. φ = φ(t) ist der Rotorwinkel. 

Die Spannungsgleichung im statorfesten System lautet demnach: 

    u'= i‘+ di'/dt‘ + jω'⋆ejφ     (2.4.2) 
 

3. DIE ÜBERTRAGUNGSMATRIX DER SYNCHRONMASCHINE 

3.1 ÜBERTRAGUNGSMATRIX BEI KONSTANTER WINKELGESCHWINDIGKEIT 

Es werden die in Abschnitt 2.3 zusammengefassten Gleichungen der permanentmagne-

tisch erregten Synchronmaschine mit Vollpoleigenschaften im d-q-System in bezogenen 

Größen zugrunde gelegt. Auf die Kennzeichnung der bezogenen Größen durch Apostro-

phe wird verzichtet. 

Die Spannungsgleichung (2.3.1) im rotorfesten System: 

     u = i + di/dt +jω*i + jω 

ist eine nichtlineare komplexe Differentialgleichung. 

Mit der komplexen Variablen: a = 1 + jω      (3.1.1) 

kann diese Gleichung auch in der Form: 

     u = di/dt +a*i + jω    (3.1.2) 
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dargestellt werden. Nach Durchführung einer Umformung wird hieraus die Gleichung: 

     u - jω = di/dt +a*i    (3.1.3) 

Aus der Form dieser Gleichung ist ersichtlich, daß es sich um ein komplexes VZ1-Glied im 

Sinne von NAUNIN (/14/, Blatt Dynl3) handelt. Die Übergangsfunktion des komplexen 

VZ1-Gliedes ist - wie dort beschrieben - eine Spirale. Bei Voraussetzung konstanter Win-

kelgeschwindigkeit ω wird aus der Spannungsgleichung 2.3.1 eine lineare Differentialglei-

chung. Bei konstanter Winkelgeschwindigkeit ω kann also auf dieses Gleichungssystem 

die Laplacetransformation angewendet werden und so eine Übertragungsfunktion abgelei-

tet werden. Durch Anwendung der Laplacetransformation auf die Komponenten der DGL 

(2.3.1) erhält man: 

    ud(s) = s*id + id - ω*iq     (3.1.4) 

    uq(s) = s*iq + iq + ω*id + ω 

Hieraus folgt durch Umformung: 

    ud(s) = (s+1)*id -ω*iq      (3.1.5) 

    uq(s) = (s+1)*iq + ω*id + ω 

In Matrixschreibweise lautet dieser Zusammenhang: 

   (
ud
uq

) = (
s + 1 −ω

ω s + 1
) *(

id
iq

) +  (
0
ω

)    (3.1.6) 

Damit sich hier nun ein linearer Zusammenhang ergibt, muß das Gleichungssystem wie 

folgt umgeformt werden: 

  (
ud

uq − ω
) = (

s + 1 ω
−ω s + 1

) *(
id
iq

)     (3.1.7) 

Anstelle von uq tritt also hier der Ausdruck uq-ω = uq-up auf der linken Seite der Gleichung 

auf. Durch Auflösung nach id und iq ergibt sich: 

  (
id
iq

) = 1/D  (
s + 1 −ω

ω s + 1
) *(

ud
uq − ω

)    (3.1.8) 

, wobei D = (s+1)2 + ω2 ist. 

Die in Gleichung (3.1.8) auftretende Übertragungsmatrix wird nun mit A bezeichnet: 

  A = 1/D (
s + 1 −ω

ω s + 1
)      (3.1.9) 

Die Übertragungsmatrix A ist orthogonal. 

Für die Determinante der Übertragungsmatrix erhält man unter Berücksichtigung der Tat-

sache, daß der vor der Matrix stehende Faktor 1/D mit der Potenz zwei berücksichtigt wer-

den muß, den Wert:  

   det(A) = ((s+1)2 + ω2)-1 = D-1     (3.1.10) 
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Die Übertragungsmatrix A wird bestimmt durch die beiden Übertragungsfunktionen: 

   G1(s) = (s+1)/((s+1)2 + ω2)     (3.1.11) 

und  

    G2(s) = s/((s+1)2 + ω2)     (3.1.12) 

 

Für diese beiden Übertragungsfunktionen wurden mit einem Rechnerprogramm die Fre-

quenzkennlinien und die Ortskurven bei verschiedenen Werten von ω berechnet. 

Im Folgenden wird der Parameter ω zur Unterscheidung von der Abszissenvariablen ω = 

2*n*f in den Frequenzkennlinien mit ωr bezeichnet. 

Die Bilder 3.1 bis 3.3 zeigen die Frequenzkennlinien für ωr =0,5 , ωr = 1 Und ωr =10 . 

Die Resonanzstellen von Gi(s) liegen stets bei ω = ωr. 

 

Bild 3.1 Betragsfrequenzgänge der Funktionen Gi(jω) und Ga (jω) bei ωr = 0,5 
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Bild 3.2 Betragsfrequenzgänge der Funktionen Gi(jω) und G2 (jω) bei ωr = 1 

 

Bild 3.3 Betragsfrequenzgänge der Funktionen Gi (jω) und Gz (jω) bei ωr = 10 

 

Auffällig ist die starke Ausprägung der Resonanz beim Parameterwert ωr = 10 . 

Die Interpretation der Frequenzkennlinien ist nicht ganz einfach. Berücksichtigt werden 

muß hier insbesondere, daß bei ihrer Erstellung das rotorfeste System zugrunde gelegt 

wurde. 
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Grundsätzlich ist eine starke Dämpfung der höherfrequenten Anregungen festzustellen, da 

das System aufgrund der in ihm enthaltenen Induktivitäten Tiefpaßcharakter besitzt. 

Betrachtet man die Funktion Gi(s), die die Übertragung zwischen gleichartigen Komponen-

ten bestimmt, so wird erkennbar, daß eine stationäre sinusförmige Anregung einer Kom-

ponente dann besonders stark übertragen wird, wenn ihre Frequenz in der Nähe der 

Rotorfrequenz liegt. 

Der Einsatz von Pulswechselrichtern bedingt unvermeidliche Spannungsoberwellen. Der 

vom Pulswechselrichter im statorfesten System gegebene Spannungsverlauf ist zunächst 

in das rotorfeste System umzurechnen. Bei den im rotorfesten System auftretenden Span-

nungsoberwellen ist nun insbesondere auf solche Frequenzanteile zu achten, die in den 

Bereich der Rotorfrequenz fallen. Geht man davon aus, daß die Pulswechselrichterfre-

quenz fp wesentlich höher ist als die Rotorfrequenz , so sind solche störenden Anregungen 

insbesondere dann zu erwarten, wenn die Pulswechselrichterfrequenz ein ganzes Vielfa-

ches der Rotorfrequenz ist. 

3.2 LINEARISIERUNG DES MODELLS 

Die im obigen Abschnitt durchgeführten Rechnungen erforderten die Annahme konstanter 

Winkelgeschwindigkeit ω. 

Eine andere Möglichkeit zur Linearisierung, die ohne diese Annahme auskommt, besteht 

darin, die nichtlinearen Terme in einer neu zu definierenden Größe zu "verstecken". Hierzu 

wird die Spannungsgleichung (2.3.1) wie folgt umgeformt: 

    u - jω*i - jω = i + di/dt     (3.2.1) 

Für die linke Seite der Gleichung wird nun eine neue Variable eingeführt, die hier als 

 kompensierte Spannung ukomp bezeichnet wird: 

    ukomp = u - jω*i – jω     (3.2.2) 

Unter Verwendung dieser Definition wird aus Gleichung (3.2.1): 

    ukomp = i + di/dt      (3.2.3) 

Durch Übergang zur Komponentenschreibweise erhält man zwei nicht gekoppelte lineare 

Differentialgleichungen: 

    Ukomp.d = id + did/dt     (3.2.4a) 

    Ukomp,q = iq + diq/dt     (3.2.4b) 

Jede dieser Spannungsgleichungen ist identisch mit der einfachsten Form der Spannungs-

gleichung der Gleichstrommaschine. 

Dieser Ansatz kann den Ausgangspunkt für die Entwicklung eines linearen Zustandsreg-

lers für die permanentmagnetisch erregte Synchronmaschine bilden. 
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4. Verhalten im stationären Zustand 

4.1 Stromzeigergebiete 

4.1.1 Allgemeines 

Das Verhalten der permanentmagnetisch erregten Synchronmaschine im stationären Zu-

stand ist ausführlich in /3 GROTSTOLLEN/ untersucht worden. Gegenüber der erwähnten 

Untersuchung sind die hier erzielten Resultate übersichtlicher und einfacher, da hier das 

bezogene Größensystem verwendet wird. 

Als stationärer Zustand wird im Folgenden ein Zustand bezeichnet, bei dem die Rotorwin-

kelgeschwindigkeit ω konstant ist und 

     i(t) = i ⋆ejωt     (4.1.1.1) 

gilt. 

Der Weg des Strompunkts ist dann ein Kreis. Um den umständlichen Ausdruck "Winkelge-

schwindigkeit" zu vermeiden, wird dieselbe in diesem Abschnitt auch einfach als Drehzahl 

bezeichnet. Wegen des verwendeten Formelzeichens ω sind Verwechselungen nicht zu 

befürchten. 

Es wird nun das Verhalten des Motors bei Vorliegen des stationären Zustands untersucht. 

Die Untersuchung erfolgt im rotorfesten System in bezogenen Größen. Auf die Anbringung 

der Apostrophe, die bei der Herleitung der bezogenen Größen zur Unterscheidung der be-

zogenen von den nicht bezogenen Größen dienten, wird hier verzichtet. 

Ziel der Betrachtungen ist, die Drehmoment-Drehzahl-Charakteristik der permanentmag-

netisch erregten Synchronmaschine zu bestimmen sowie den Einfluß der Vorsteuerung zu 

untersuchen. 

Bei der Untersuchung des stationären Falls ergeben sich nun die folgenden zwei Frage-

stellungen: 

1. Bestimmung des maximalen und minimalen erzeugbaren Moments m in Abhängigkeit 

von ω und den Maschinenparametern. Die Lage des Stromzeigers ist dann durch die 

Forderung nach Maximalität des Moments bereits bestimmt. Diese Bestimmung der 

Drehmoment-Drehzahl-Charakteristik wird in Abschnitt 4.2 durchgeführt. 

2. Die Bestimmung der Lage des Stromzeigers bei vorgegebenem Moment mel im Sinne 

einer verlustoptimalen Steuerung. Hierauf wird in Abschnitt 4.3 eingegangen. 

Es sind dabei die Bereiche mel>0 und mel<0 und die Bereiche ω>0 und ω<0 zu untersu-

chen. 

Man kann jedoch die Untersuchung beschränken auf entweder den Bereich mel > 0 oder 

den Bereich ω>0. Hier wird der Bereich mel>0 untersucht für den Drehzahlbereich -ꝏ < ω 
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< + ꝏ . Im Bereich ω>0 stellt das Moment mele dabei ein Antriebsmoment dar, während es 

im Bereich ω<0 als Bremsmoment wirkt. 

Aus der Spannungsgleichung (2.2.9) folgt durch Wegfall der zeitlichen Ableitung die Span-

nungsgleichung für den stationären Zustand: 

    u = i + jω*i + jω 

    u = (1+jω) * i + jω     (4.1.1.2) 

Der Summand jω ist die Polradspannung Up: 

     up = jω      (4.1.1.3) 

Zu beachten ist hier, daß die bezogene Winkelgeschwindigkeit ω des Rotors auch nega-

tive Werte annehmen kann. 

4.1.2 Der E-Kreis 

Der Betrag von u ist im realen Fall begrenzt durch die Bemessung der Spannungsversor-

gung (hier der Zwischenkreisspannung), so daß gilt: 

     |u| <= Un     (4.1.2.1) 

Der Wert Umax wird in jedem Fall begrenzt durch die Spannungsfestigkeit des Motors und 

der übrigen Bauelemente. 

Das durch (4.1.2.1) bestimmte kreisförmige Spannungszeiger-Gebiet wird gemäß Glei-

chung (4.1.1.4) auf ein kreisförmiges Stromzeiger-Gebiet abgebildet, dessen Größe und 

Lage von der Winkelgeschwindigkeit ω abhängig ist. 

Dieses Gebiet soll erreichbares Stromzeiqer-Gebiet (E-Gebiet) genannt werden. Der 

Rand des Gebiets soll als E-Kreis bezeichnet werden. 

Der Mittelpunkt des E-Kreises ist durch ip gemäß Gleichung (4.1.1.6) gegeben. 

Die Ortskurve von ip in Abhängigkeit von ω ist ein Kreis mit dem Radius 1/2 und dem Mit-

telpunkt ipB = -1/2. 

Der Radius des E-Kreises ist gemäß (4.1.1.7) gegeben durch: Umax / |1 +jω | 

4.1.3 Der Z-Kreis 

Der Betrag von i muß begrenzt werden, da bei zu großen Strömen: 

1. die Entmagnetisierung der Permanentmagnete erfolgt und 

2. die Motortemperatur das zulässige Maß übersteigt. 

Dementsprechend muß dafür gesorgt werden, daß die folgende Bedingung gewährleistet 

ist:    |i| < = inmax     (4.1.3.1) 

Das so bestimmte kreisförmige Gebiet soll zulässiges Stromzeiqer-Gebiet (Z-Gebiet) 

genannt werden.Der Rand des Gebiets soll als Z-Kreis bezeichnet werden. 

Der Z-Kreis ist also gegeben durch: 
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     id2 + iq2 = iBax2     (4.1.3.2) 

Bei genauerer Betrachtung kann noch unterschieden werden zwischen dem kurzzeitig und 

dem langzeitig zulässigen Gebiet. 

4.1.4 DAS VERFÜGBARE STROMZEIGER-GEBIET 

Der Durchschnitt des erreichbaren und des zulässigen Gebiets soll als verfügbares 

Stromzeiqerqebiet (V-Gebiet) bezeichnet werden. Das verfügbare Gebiet ist also stets 

die Schnittmenge zweier Kreise in der komplexen Ebene. 

Bei ω=0 ist der E-Kreis ein Kreis um den Ursprung mit dem Radius Umax . 

Bei vernünftiger Dimensionierung des Systems wird gelten: 

     Umax > Imax     (4.1.4.1) 

Diese Bedingung gewährleistet, daß die verfügbare Spannung so groß ist, daß zumindest 

bei Rotorstillstand der zulässige Strom fließen kann. 

Bei ω = 0 ist dann das zulässige Stromzeigergebiet im erreichbaren Gebiet enthalten. 

Die Gültigkeit der Ungleichung (4.1.4.1) wird im Weiteren vorausgesetzt, ohne daß jeweils 

explizit darauf hingewiesen wird. 

Die Bilder 4.1 bis 4.3 zeigen die Lagen von E-Kreisen und Z- Kreisen bei drei verschiede-

nen Rotordrehzahlen. 

4.2 DAS MAXIMAL ERZEUGBARE MOMENT 

4:2.1 Definitionen 

Als höchster Punkt einer (beschränkten) Menge in der komplexen Ebene werde der 

Punkt mit dem größten Imaginärteil bezeichnet. Offensichtlich wird das maximale Moment 

erzeugt, wenn der Strompunkt i im höchsten Punkt des V-Gebiets liegt. 

Es sind nun drei Fälle denkbar: 

1. Der höchste Punkt des Z-Kreises liegt innerhalb des E-Kreises. Dann erzeugt dieser 

Punkt das maximale Moment. 

2. Der höchste Punkt des E-Kreises liegt innerhalb des Z-Kreises. Dann erzeugt dieser 

Punkt das maximale Moment. 

3. Weder Fall 1 noch Fall 2 liegt vor. Dann wird das maximale Moment von einem der bei-

den Schnittpunkte von E-Kreis und Z- Kreis erzeugt. 

Die unter 1. und 2. gemachten Aussagen ergeben sich unmittelbar aus der Tatsache, daß 

das V-Gebiet die Schnittmenge von E-Gebiet und Z-Gebiet ist. 
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Die unter 3. gemachte Aussage ergibt sich aus der Kreisform der Gebiete und der Tatsa-

che, daß das höchste Punkt des V-Gebiets ein Randpunkt ist. 

Bild 4.1 Lage von E-Kreisen und Z-Kreis bei ω = 1 pu 

 

Bild 4.2 Lage von E-Kreisen und Z-Kreis bei ω = 3,5 pu 
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Bild 4.3 Lage von E-Kreisen und Z-Kreis bei ω = 7. 

Der Drehzahlbereich, in dem Fall 1 gilt, soll als strombestimmter Bereich bezeichnet 

werden, da die Größe imax das maximal erzeugbare Moment bestimmt. Grotstollen /3/ ver-

wendet hier den Begriff Grundstellbereich. 

Dementsprechend wird der Drehzahlbereich, in dem Fall 2 gilt, als spannunqsbestimm-

ter Bereich bezeichnet, da hier die Größe Umax das maximal erzeugbare Moment be-

stimmt. Dieser Bereich wird von Grotstollen als oberer Feldschwächbereich bezeichnet. 

Der Drehzahlbereich, in dem Fall 3 gilt, als stromspannunqs-bestimmter Bereich be-

zeichnet. Grotstollen bezeichnet diesen Bereich als unteren Feldschwächbereich. 

 

4.2.2 DARSTELLUNGEN DES E-KREISES 

Eine Parameterdarstellung des E-Kreises ist gegeben durch: 

    umax*ejφ  = i⋆(1+jω) + jω   (0<= φ <2π)  (4.2.2.1) 

Mit i = id +jiq erhält man: 

    umax*ejφ = id - ωiq + j(ωid +iq +ω) 

Durch Betragsbildung und Quadrieren folgt: 

    umax
2 = (id-ωiq)2 + (ωid+iq+ω)2    (4.2.2.1) 

    umax
2 = (1+ω2) ⋆(id2+iq2) + 2ω*(ωid+iq) + ω2  (4.2.2.2) 

Obwohl der durch (4.2.2.2) gegebene Zusammenhang sehr einfach ist, gestaltet sich die 

Bestimmung des Weges des E-Kreises in Abhängigkeit von ω durch die komplexe Ebene 

kompliziert, da sie auf Gleichungen 3. und 4. Grades führt. 

In den folgenden Abschnitten werden Beziehungen für einige charakteristische Punkte des 

E-Kreises abgeleitet. 
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4.2.3 Schnittpunkte des E-Kreises mit der imaginären Achse 

Die Schnittpunkte des E-Kreises mit der imaginären Achse erhält man durch Einsetzen 

von id = 0 in Gleichung (4.2.2.1): 

   umax
2 = (ω*iq)2 + (ω+iq)2      (4.2.3.1) 

   umax
2 = (ω2+1)*iq2 + 2ω*iq +ω2 

   iq2 + 2ω/(ω2+1) *iq +(ω2-umax
2) / (ω2+1) = 0 

    iq1/2 = (- ω  ( ω2 - (ω2-umax 2) ⋆(ω2+1))1/2)/(ω2+1) 

   iq1/2 = (-ω (Umax
2
*(ω2+1) - ω4)1/2)/(ω2+1)   (4.2.3.2) 

Da Gleichung (4.2.3.1) symmetrisch bezüglich ω und iq ist, erhält man die Auflösung von 

Gleichung (4.2.3.1) nach ω aus Gleichung (4.2.3.2) durch Vertauschen von iq und ω: 

   ω1/2 = -iq (Umax
2
*(iq2+1) - iq4) 1/2 /(iq2+1)    (4.2.3.3) 

Ersetzt man in (4.2.3.3) iq durch imax, so erhält man die Drehzahlen ω-g<0 und ωg>0 , bei 

denen der E-Kreis den Z-Kreis im höchsten Punkt schneidet: 

   ωg = (-imax + (umax
2 ⋆(imax

2 +1) - imax
4) 1/2) /(imax

2+1)   (4.2.3.4) 

   ω-g = ( -imax – (umax
2 ⋆( imax 2 +1) - imax

4))1/2 /(imax
2+1) 

Der strombestimmte Drehzahlbereich ist also der Bereich: 

    ω-g<= ω <=ωg      (4.2.3.5) 

Die Werte ω-g und ωg werden als Grunddrehzahlen bezeichnet. 

Im strombestimmten Drehzahlbereich ist das maximal erzeugbare Moment drehzahlunab-

hängig gegeben durch: 

    mel = 3/2 ⋆zp *kmom' ⋆imax    (4.2.3.6) 

Dieses Moment wird durch den Stromzeiger i = j*imax erzeugt. Eine Vorsteuerung des 

Stromzeigers ist in diesem Bereich also nicht erforderlich. 

Als natürliche Leerlaufdrehzahl ωLnat soll die größte Drehzahl bezeichnet werden, bei 

der die Maschine stromlos betrieben werden kann.  

Diese Bezeichnung ist aus /3 GROTSTOLLEN/ übernommen. 

Man erhält sie, indem man in Gleichung (4.2.3.1) iq =0 setzt: 

     ωLnat = Umax     (4.2.3.7) 

+  
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4.2.4 3 Schnittpunkte des E-Kreises mit der reellen Achse 

Die Schnittpunkte des E-Kreises mit der reellen Achse erhält man durch Einsetzen von 

 iq = 0 in (4.2.2.1): 

    umax
2 = id2 + (ω(ω+id))2 

    umax
2 = (1+ω2)*id2 + 2ω3 id +ω4    (4.2.4.1) 

Auflösung dieser Gleichung nach id ergibt: 

    (ω2+1)*id2 + 2ω3 id + ω4 -umax
2 = 0 

    Id1/2 = (-ω3  (ω6 - (ω4 -umax 2) ⋆(ω2 +1) 1/2)/(ω2+1) 

    Id1/2 = (-ω3  (umax
2*(ω2+1) - ω4) 1/2/(ω2+1)  (4.2.4.2) 

Durch Betrachtung der Diskriminante in Gleichung (4.2.4.2) erhält man als Bedingung für 

die Existenz der Schnittpunkte i1/2 : 

    Umax
2 > ω4/(ω2+l)     (4.2.4.3) 

Der E-Kreis berührt die reelle Achse bei der Drehzahl ωbd. Ist |ω| > ωbd, so schneidet der 

E-Kreis die reelle Achse nicht. 

Als maximale Leerlaufdrehzahl ωLmax soll die Drehzahl bezeichnet werden, bis zu der 

die Maschine im Leerlauf (iq =0) betrieben werden kann. (a = √3/2) 

Es gilt also: 

     ωLmax <= ωbd     (4.2.4.5) 

    i q 1/2 = (a ( ω2 ⋆(imax
2 ⋆(1+ω2) -a2))0,5 /(1+ω2)  (4.2.5.6) 

Dies sind die q-Komponenten der Schnittpunkte von Z-Kreis und E-Kreis. 

Die zugehörigen d-Komponenten erhält durch Verwendung der Beziehung (4.2.5.4): 

     iq = aω - ωid 

     iq2 = a2ω - 2aωωid + ω2id2 

Durch Einsetzen der Beziehung iq2 = imax
2 - id2 folgt: 

    imax
2 - id2 = a2ω - 2aωid + ω2id2 

    (1+ω2)*id2 - 2aωid + a2ω - imax
2 = 0 

    id 1/2 =(aω ( a2ω2 + (imax 2 -a2ω) ⋆(1+ω2 ) ) 0,5 /(1+ω2) 

    id 1/2 =(aω  imax
2 *(1+ω2) - a2) /(1+ω2)   (4.2.5.7) 

Die hier berechneten Schnittpunkte von E-Kreis und Z-Kreis liefern im strom-spannungs-

bestimmten Drehzahlbereich das größte bzw. kleinste erzeugbare Moment. Sowohl Strom 

als auch Spannung besitzen hier den maximal zulässigen Wert. 

  

5 
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4.2.6 Der höchste Punkt des E-Kreises 

Im spannungsbestimmten Bereich wird das maximal erzeugbare Moment vom höchsten 

Punkt des E-Kreises bestimmt. Der Übergang vom ström-spannungsbestimmten Bereich 

zum spannungsbestimmten Bereich erfolgt, wenn der höchste Punkt des E-Kreises auf 

dem Z-Kreis liegt. Es soll deshalb die Abhängigkeit des höchsten Punktes des E-Kreises 

von der Winkelgeschwindigkeit ω untersucht werden. 

Der höchste Punkt ih des E-Kreises ist gegeben durch: 

    ih = jumax/(1+ω2)0,5 - jω/(1+jω) 

    ih = (-ω2 + j(umax* (1+ω2) 0,5 - ω))/(1+ω2)   (4.2.6.1) 

Die Komponenten von ih sind also: 

    ihd = -ω2/(1+ω2)      (4.2.6.2) 

    ihq = (umax*/(1+ω2) 0,5  - ω )/(1+ω2)   (4.2.6.3) 

Die Komponente ihq kann nun als Funktion von ihd dargestellt werden. Dazu wird (4.2.6.2) 

nach ω2 aufgelöst: 

    ω2 = -ihd/(ihd + 1)     (4.2.6.4) 

Nach Einsetzen in (4.2.6.3) und Umformen erhält man unter der Voraussetzung ω>0 : 

    ihq = (umax*-√−𝐗𝐡𝐝) /√𝒊𝒉𝒅  +  𝟏    (4.2.6.5) 

In (4.2.6.5) durchläuft ihd den Bereich -1<= ihd <= 0. 

Es folgt nun, daß ihq nur im Fall umax<1 negative Werte annehmen kann. 

Ferner folgt, daß ihq im Fall umax>1 monoton abnimmt. 

Es gilt nun: 

   ih2 = ihd
2 + ihq

2 

Mit x =√−ihd  folgt aus (4.2.6.2) und (4.2.6.3) : 

   ih2 = ihd
2 + (umax-x)2 ⋆(1-x2) 

   ih2 = x4 + (umax
2 – 2umax*x + x2 ) ⋆(1~x2) 

   ih2 = umax
2 - 2umax*x + x2 — umax

2*x2 + 2umax*x3 

   ih2 = 2*umax*x3 - (1-umax
z)*x2  2umax*x + umax

2   (4.2.6.6) 

Das Betragsquadrat von ih ist gemäß Gleichung (4.2.6.1) gegeben durch: 

   ih2 = ( ω4 + (umax* √𝟏 +  𝛚𝟐  - ω)2 )/ (1+ω2)2    (4.2.6.7) 

Der spannungsbestimmte Drehzahlbereich liegt nun genau dann vor, wenn ih <= imax ist. 

Ersetzt man in (4.2.6.7) ih durch imax, so erhält man: 

imax
2-umax

2 + (imax
2_1)*ω2 = -2umax *ω/ √𝟏 +  𝛚𝟐     (4.2.6.8) 

Mit den Abkürzungen: a = imax
2-umax

2,  b = imax
2~1   und   x = ω2 

erhält man durch Quadrieren aus (4.2.6.8): 
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 b2x3 + b*(b+2a)*x2 + (a2 + 2ab - 4umax
2)*x + a2 = 0   4.2.6.9 

Dies ist eine kubische Gleichung in x=ω2. 

Sie hat bei sinnvoller Parameterkombination (imax , umax) genau eine reelle Lösung. Diese 

Lösung gibt die Winkelgeschwindigkeit an, bei der der Übergang in den spannungsbe-

stimmten Bereich erfolgt. 

 

4.2.7 DIE DREHMOMENT-DREHZAHL-CHARAKTERISTIK 

Wird keine Vorsteuerung des Stromzeigers verwendet, d.h. id =0 , so ist der Maximalwert 

von iq bestimmt durch die Gleichung (4.2.3.2)  

iq = ( -ω +(umax
2*(ω2+l) -ω4)0,5)/(ω2+1) 

und die Gleichung iq = imax 

Dabei ist jeweils der kleinere Wert zu verwenden. Die sich durch Gleichsetzung der beiden 

Gleichungen ergebenden Drehzahlwerte sind identisch bei den Drehzahlen ωg und ω-g. 

Wird momentmaximale Vorsteuerung des Stromzeigers verwendet, so ist der Maximalwert 

von iq bestimmt durch die Werte: 

iq1 = ( a+ ( ω2 ⋆(imax
2 ⋆(1+ω2) - a2)0,5 ) /(1+ω2)   (Gl 4.2.5.6) 

mit a = (umax
2 - imax

2 - (1-imax
2 ) ⋆ω2) / (2 ω)   (Gl 4.2.5.3) 

und 

iq2 = (umax *•( 1+ω2)0.5 - ω )/(1+ω2)   (Gl 4.2.6.3) 

und 

iq3 = imax 

Welcher Wert zu wählen ist, wird dabei durch den Drehzahlbereich bestimmt. Die Be-

reichsgrenzen sind dabei durch die Gleichungen (4.2.3.4) und (4.2.6.9) gegeben. 

Die Bilder 4.4 bis 4.7 zeigen die die Maximalwerte von iq bei momentmaximaler Vorsteue-

rung des Stromzeigers für verschiedene Wertekombinationen imax und umax in Abhängigkeit 

von der Winkelgeschwindigkeit ω . 
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Bild 4.4 Iqmax in Abhängigkeit von ω bei Imax=0,5 mit u=umax als Parameter 
 

Bild 4.6 iqmax in Abhängigkeit von ω bei imax = 0,5 mit u=umax als Parameter 
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Bild 4.7 iqmax in Abhängigkeit von ω bei imax = 4 mit u=umax als Parameter 
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4-3 VORSTEUERUNG DES STROMZEIGERS 

4.3.1 DEFINITIONEN 

Ist ein Moment mel vorgegeben, das bei der vorhandenen Drehzahl ω erzeugbar ist, so ist 

von der zu mel gehörenden Isomomentengerade nur der Teil nutzbar, der innerhalb des V-

Gebiets liegt. Es handelt sich hierbei um eine Strecke, die von den Rändern des V-Gebiets 

begrenzt wird. 

Diese Strecke soll Isomomentenstrecke genannt werden. 

Bild 4.8 zeigt die Lage zweier Isomomentenstrecken in der id-iq- Ebene. 

Der Momentenfaktor fm wird nun definiert durch: 

fm =|iq|/i      (4.3.1.1) 

Die Verlustleistung in der Maschine ist gegeben durch: 

Pv = 3/2 *kEMK
2 ⋆R2/L2 *i2    (4.3.1.2) 

Liegt keine Einschränkung der Wahl von i durch Umax vor, so kann gewählt werden: 

i = j*iq      (4.3.1.3) 

Die in jedem Fall unvermeidbare Verlustleistung ist also gegeben durch: 

Pv.min = 3/2 *kEMK
2 ⋆R2/L2 *iq2    (4.3.1.4) 

Der Wert 

fv = Pv/Pv.min     (4.3.1.5) 

soll als Verlustfaktor bezeichnet werden. 

Es gilt nun    fv = fm2      (4.3.1.6) 

Ein Strompunkt i auf einer Isomomentenstrecke wird verlustoptimal genannt, wenn fm ma-

ximal ist. 

Der Winkel γ = arg(i) - π/2 wird als Steuerwinkel bezeichnet. 

Es zeigt sich, daß bei verlustoptimaler Steuerung des Stromzeigers i stets gilt: γ >=0. 

Ist γ >0 , so liegt eine Vorsteuerung des Stromzeigers vor. 

Bezüglich der Lage der Isomomentenstrecke sind zwei Fälle zu unterscheiden: 

1. Die Isomomentenstrecke schneidet die imaginäre Achse. Dann ist der verlustoptimale 

Punkt der Schnittpunkt. Das Gebiet in der iq-ω-Ebene, in dem dieser Fall eintritt, soll als 

Grundstellqebiet bezeichnet werden. 

2. Die Isomomentenstrecke schneidet die imaginäre Achse nicht. Dann liegt der Strom-

punkt bei verlustoptimaler Steuerung auf dem E-Kreis. Das Gebiet in der iq-ω-Ebene, in 

dem dieser Fall eintritt, soll als Feldschwächqebiet bezeichnet werden. 

4.3.2 DAS GRUNDSTELLGEBIET 

Der Momentenfaktor fm hat hier den Wert 1, der Steuerwinkel ist Null. Gleichung (4.2.3.2) 
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liefert die Grenze des Grundstellgebiets: 

ω1/-1(iq) = ( -iq +/-(umax
2 *(iq2+1))-iq4)0.5)/(iq2+1)  (4.3.2.1) 

Die Grenze des Grundstellgebiets kann auch durch Gleichung (4.2.3.2) beschrieben wer-

den: 

umax
2 >= (ω*iq)2 + (ω+iq)2   (4.3.2.2) 

 

Bild 4.8 Isomomentenstrecken in der Stromebene 

 

4.3.3 DAS FELDSCHWÄCHGEBIET - VERLUSTOPTIMALE STEUERUNG 

Das Feldschwächgebiet soll hier eingeteilt werden in das Feldschwächgebiet 1, bei dem 

ein Randpunkt der Isomomentenstrecke auf dem Z-Kreis liegt, und das Feldschwächge-

biet 2, bei dem dies nicht der Fall ist. 

Aus Bild 4.8 ist ersichtlich, wie diese beiden Situationen bei gleichem ω für verschiedene 

Werte von iq auftreten. 

Im Feldschwächgebeit gilt: 

Umax
2 < (ω*iq)z + (ω+iq)z (4.3.3.1) 

Bei verlustoptimaler Steuerung liegt der Strompunkt i. auf dem E- Kreis. 

Daraus folgt, daß Gleichung (4.2.2.1) hier Gültigkeit besitzt: 

Umax
2 = (id-ωiq)2 + (ωid + iq + ω)z 

Diese wird nach id aufgelöst: 
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(1+ω2)*id2 +2ω2 *id + (ωiq)2 + (iq + ω)2 - Umax
2 = 0   (4.3.3.2) 

Es wird nun die Abkürzung: 

a= (ωiq)2 + (iq + ω)2 - Umax
2      (4.3.3.3) 

eingeführt. 

Aus Gleichung (4.3.3.1) folgt, daß a<0 ist. Mit der Abkürzung a erhält man: 

(1+ω2)*id2 +2ω2*id + a = 0      (4.3.3.4) 

Für id ergeben sich die beiden Lösungen: 

id 1/2 = ( -ω2 ± (ω4 - a*(1+ω2)2)0,5/(1+ω2) 

Von den beiden Lösungen ist hier die betragsmäßig kleinere zu wählen, so daß gilt: 

id = (-ω2 + (ω4 - a*(1+ω2)2) 0,5 /(1+ω2)     (4.3.3.5) 

Im Feldschwächbereich ist stets id <0 . Daraus folgt, daß die d-Komponente des 

Statorfelds dem Rotorfeld entgegenwirkt, woraus der Name Feldschwächbetrieb resultiert. 

Zusammenfassend läßt sich hier sagen, daß ein Wachsen von umax nicht nur den Dreh-

zahlbereich erweitert, in dem ein gegebenes Moment erzeugt werden kann, sondern auch 

außerhalb des Grundstellgebiets die Verlustleistung in der Maschine verringert. 

Gleichung (4.3.3.5) liefert eine nichtlineare Steuerfunktion id = f(ω,iq) zur verlustoptimalen 

Steuerung des Stromzeigers. Die Berechnung von id nach Gleichung (4.3.3.5) erfordert ei-

nen sehr großen Rechenaufwand und ist deshalb im realen System nicht möglich. 

Die Implementierung der Steuerfunktion (4.3.3.5) in einem digitalen System kann nun 

durch Tabellierung der Funktion an endlich vielen Rasterpunkten 

(n*iq,m*ωo)   n=-N...N , m= -M…M 

erfolgen.  

Dabei stellen die Werte iqo und ωo die Rastermaße dar. Die Bestimmung von id erfolgt nun 

dadurch, daß im Bereich (n-0.5)*iqo<=iq <(n+0,5)*iqo , (m-0,5)*ωo<=ω <(m+0,5)*ωo der ent-

sprechende tabellierte Wert verwendet wird. 

Bei der Festlegung der Rastermaße ist Höhe der Sprünge von iq an den Bereichsgrenzen 

zu berücksichtigen, da das Auftreten von sehr großen Sprüngen einen negativen Einfluß 

auf die Regelbarkeit des Systems hat. 

Eine Verbesserung läßt sich hier erzielen, indem zwischen den Rasterpunkten zweidimen-

sional interpoliert wird. Auch bei diesem Verfahren treten noch Sprünge von id bei infinite-

simalen Änderungen von iq und oder ω auf. Diese sind jedoch wesentlich weniger 

ausgeprägt als bei Verwendung des Verfahrens ohne Interpolation. Denkbar ist auch ein 

Verfahren, bei dem zur Verringerung des Rechenaufwands die Interpolation nur hinsicht-

lich einer Variablen vorgenommen wird. 
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Eine weitere Möglichkeit zur Realisierung einer Steuerfunktion besteht darin, die Steuer-

funktion (4.3.3.5) zu vereinfachen. Bei dieser Vereinfachung muß die Steuerung möglichst 

so erfolgen, daß stets der gesamte Momentenbereich zur Verfügung steht. Es gibt nun 

zwei Vorsteuerarten, bei denen die Steuerung unabhängig vom zu erzeugenden Moment, 

d.h. von iq ist. 

a) Vorsteuerung mit momentenunabhängiger id-Komponente In diesem Falle gilt: id = id(ω)  

Ändert sich das durch die Regelung vorgegebene Sollmoment, so ändert sich bei Benut-

zung diese Vorsteuerungsart sowohl der Betrag als auch der Winkel des Stromzeigers.  

b) Vorsteuerung mit momentenunabhängigem Vorsteuerwinkel  

In diesem Falle gilt: φ = φ(ω).  

Bei Änderung des Sollmoments ändert sich hier nur der Betrag des Stromzeigers.  

Der geometrische Ort ist in beiden Fällen eine Gerade. Diese Gerade soll hier als Steu-

erqerade bezeichnet werden.  

Will man stets über das maximale Moment verfügen, so wird man die Steuergerade so le-

gen, daß der Strompunkt io , bei dem das maximal erzeugbare Moment erzeugt wird, auf 

der Steuergerade liegt.  

Hier ist in diesem Zusammenhang zu untersuchen, inwieweit bei Verwendung der Vor-

steuerarten auch kleine Momente bei großen Winkelgeschwindigkeiten erzeugbar sind.  

Zu diesem Zweck wird die Steuerstrecke definiert als der Teil der Steuergeraden, der in-

nerhalb des verfügbaren Stromzeiger-Gebiets liegt.  

Das Moment 0 ist nun offenbar genau dann erzeugbar, wenn die Steuerstrecke die id-

Achse schneidet.  

Bei Versteuerung mit momentenunabhängiger id-Komponente existiert der Schnittpunkt 

der Steuerstrecke mit der id-Achse stets.  

Bei Versteuerung mit momentenunabhängigem Vorsteuerwinkel ist dies nur für Winkelge-

schwindigkeiten ω<= ωlnat der Fall.  

Bild 4.9 zeigt die Steuerstrecken bei beiden beschriebenen Vorsteuerarten bei ω<ωl,nat. 

Bild 4.10 zeigt die Steuerstrecken bei den beschriebenen Vorsteuerarten bei ω > ωlnat 
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Bild 4.9 Steuerstrecken bei ω < ω,nat  
1 Vorsteuerung mit momentenunabhängigem iq   

2 Vorsteuerung mit momentenunabhängigem Winkel 

 

Bild 4.10 Steuerstrecken bei ω > ωtnat  
1 Vorsteuerung mit momentenunabhängigem iq  

2 Vorsteuerung mit momentenunabhängigem Winkel 
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Eine Möglichkeit zur momentenunabhängigen Bestimmung von id im Feldschwächbereich 

besteht darin, die Gleichung (4.3.3.5 ) zu vereinfachen zu: 

id = -ω2/(1+ω2)  ^    (4.3.3.6) 

Bei dieser Steuerungsart hat id den Wert der d-Komponente des Mittelpunktes des E-Krei-

ses. Da bei dieser Art der Vorsteuerung der Betrag des Spannungszeigers den unter den 

gegebenen Umständen kleinstmöglichen Wert besitzt, kann hier auch von spannungsmi-

nimaler Vorsteuerung gesprochen werden. 

Da man die Vorsteuerung gemäß (4.3.3.6) nur im Feldschwächgebiet anwenden wird, be-

steht hier der Nachteil, daß bei Erreichen der Drehzahlen ωg und ω-g ein Spung von id er-

folgt. 

Eine andere Vereinfachungsmöglichkeit ist von B. ORLIK /9/ angegeben worden. 

Orlik macht den einfachen Ansatz: 

id = ωg /ω - 1 bei ω>ωg und    (4.3.3.7) 

id = ω-g/ω - 1 bei ω<ω-g 

Diese Art der Steuerung des Stromzeigers soll hier als Vorsteuerunq nach Orlik bezeich-

net werden. Die Begründung für diesen Ansatz ergibt sich aus der Betrachtung der Span-

nungsgleichung. 

Die Spannungsgleichung für den stationären Fall lautet in Komponentendarstellung : 

Ud = id - ω*iq 

Uq = iq + ω*id + ω 

Es wird nun der Term x(ω) = ω*id + ω betrachtet. Dieser wird im Feldschwächbereich kon-

stant auf dem Wert gehalten, den er bei verlustoptimaler Steuerung beim Eintritt in den 

Feldschwächbereich hatte. 

Dies liefert für ω>ωg die Identität x(ω) = x(ωg) = ωg 

Unter Verwendung dieses Wertes erhält man:  

ω*id + ω = ωg  

Durch Auflösung nach id folgt:  

id = ωg/ω - 1  

Die Bilder 4.11 und 4.12 zeigen die Lage des Strompunkts bei den hier beschriebenen 

Vorsteuerungsarten in unterschiedlichen Drehzahlbereichen. Die Art der Vorsteuerung be-

einflußt den Verlauf der Drehmoment- Drehzahl-Charakteristik. 

Die Bilder 4.13 bis 4.16 zeigen den Maximalwert von iq in Abhängigkeit von ω bei ver-

schiedenen Vorsteuerungsarten.  
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Bild 4.11 Lage des Strompunkts bei verschiedenen Vorsteuerarten  

Bild 4.12 Lage des Strompunkts bei verschiedenen Vorsteuerarten 

Bild 4.13 iqmax in Abhängigkeit von ω bei verschiedenen Vorsteuerarten (Umax=2,lmax = 0,5)  
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung  
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Bild 4.14 iqmax in Abhängigkeit von ω bei verschiedenen Vorsteuerarten (Umax=4,Imax= 0,5)  
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung 

Bild 4.15 iqmax in Abhängigkeit von ω bei verschiedenen Vorsteuerarten (Umax=2,Imax=1)  
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung  

Bild 4.16 iqmax in Abhängigkeit von ω bei verschiedenen Vorsteuerarten (Umax = 4 , lmax = 1)  
1 ohne Vorsteuerung, 2 Vorsteuerung nach Orlik, 3 momentmaximale Vorsteuerung 
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5. Dynamisches Verhalten der Synchronmaschine 

5.1 Beschreibung des dyn. Verhaltens im statorfesten System 

Bei allen Betrachtungen dieses Kapitels wird eine konstante Winkelgeschwindigkeit ω vo-

rausgesetzt. Diese Voraussetzung ist erforderlich, da das Differentialgleichungssystem, 

das das Verhalten des Systems beschreibt, allgemein nicht lösbar ist. 

Die Annahme konstanter Winkelgeschwindigkeit ist zulässig, wenn kleine Zeitabschnitte 

betrachtet werden und das Gesamtträgheitsmoment von Rotor und Last so groß ist, daß 

die mechanische Zeitkonstante erheblich größer als die elektrische Zeitkonstante ist. 

Die Größen in diesem Abschnitt sind bezogen auf ein statorfestes Koordinatensystem. 

Wir gehen von der Spannungsgleichung (2.4.2) aus. 

Die Lösung dieser Differentialgleichung ist bei konstanter Winkelgeschwindigkeit ω gege-

ben durch: 

i(t) = i(0)*e-t + jω /(1+jω) * (e-t – e jωt)*ejφ + e-t  ∫
𝑡

0
 eτ *u(τ) dτ  (5.1.1) 

Die Summanden der rechten Seite dieser Gleichung stellen in der Reihenfolge ihres Auf-

tretens den Einfluß des Anfangsstroms i(0), den Einfluß der Rotordrehung und den Einfluß 

des Spannungszeigers u(t) auf den Stromzeiger i(t) dar. 

Im Folgenden soll durch Einführung neuer Größen versucht werden, eine übersichtlichere 

Form der Gleichung (5.1.1) zu erhalten. 

Es erweist sich nun als günstig, anstelle des realen Stromzeigers i(t) einen Ersatzstrom-

zeiger i (t) zu betrachten. Dieser wird so bestimmt, daß der Einfuß der Rotordrehung ver-

schwindet. 

Der Stromzeiger ip(t) = -jω/(1+jω)*)*ej(φ +ωt) wird im Folgenden als Polradstromzeiqer be-

zeichnet. Der Polradstromzeiger ist somit bei Betrieb der Maschine mit kurzgeschlossenen 

Klemmen und Vorliegen des stationären Zustands mit dem Stromzeiger i(t) identisch. Der 

Ersatzstromzeiger 

ir(t) = i(t) - ip(t)      (5.1.3) 

wird im folgenden als reduzierter Stromzeiqer bezeichnet. 

Mit Gleichung (5.1.1) erhält man dann: 

ir(t) = ir(0) *e-t + e-t*∫
𝑡

0
 eT *u(T) dT   (5.1.4) 

Ist der Spannungszeiger u im Intervall [0,t] konstant, so vereinfacht sich Gleichung (5.1.4) 

zu:   ir(t) = ir(0)*e-t + u*(1 -e-t)     (5.1.5) 

Der resultierende Spannunqsvektor UR im Intervall [0,t] wird nun definiert durch die Glei-

chung: 

ur(1 - e-t) = e-t⋆ ∫
𝑡

0
eT*u(T) dT    (5.1.6) 
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5.2 Beschreibung des dynamischen Verhaltens im rotorfesten System  

Die Beschreibung erfolgt wieder unter der Annahme konstanter Winkelgeschwindigkeit. 

Die Größen im rotorfesten System sind hier durch den hochgestellten Index r gekenn-

zeichnet. 

Der Übergang zu Größen im rotorfesten System erfolgt durch die Transformation: 

i(t) = ir(t) *eφ+jωt 

Durch Anwendung dieser Transformation auf die Gleichungen vorigen Abschnitts erhält 

man die Gleichungen im rotorfesten System: 

ipr
 (t) = -jω/(1+jω)      (5.2.1) 

irr(t) =irr(0)*e-(t + jωt) + e- ( t + j ω t )* ∫
𝑡

0
 eτ+ jω τ 

*ur(τ) dτ    (5.2.2) 

Es gilt hier wieder: 

ir(t)=irr(t)+ipr(t)      (5.2.3) 

Das erzeugte Moment m ist gegeben durch: 

mel = 3/2 * zp * kmom*Im(ir) 

Es kann zerlegt werden in die Momente: 

mp = 3/2 * zp * kmom * Im(ipr)    (5.2.4) 

mr = 3/2 * zp * kmom * Im(irr) 

Das Moment mp ist dabei ein Bremsmoment, dessen Größe nur von der Drehzahl ω ab-

hängt. Bei der Drehzahl ω=1 erreicht mp den betragsmäßig größten Wert. 

Der resultierende Spannungsvektor ur
R wird wieder so definiert, daß bei konstantem  

ur(t) = ur gilt: ur = ur
r . Ausgehend von 

ur
R*(et+jωt - 1)/(1+jω) = ∫

𝑡

0
eT+jωT *ur (T) dT    (5.2.5) 

erhält man: 

ur
R = (1+jω)/(et+jωt - 1) ∫

𝑡

0
eT+jωT *ur (T) dT   (5.2.6) 

Mit ur
R erhält (5.2.2) die folgende Form: 

irr(t) = irr(0) *e-(t+jωt) + e-(t+jωt)* ur
R * (e(t+jωt) -1)/(1+jω)  (5.2.7) 

Der Strommittelwertzeiger Irr ist gegeben durch: 

Irr = t-1 *( ur
R/(1+jω)- irr(0) ) * e-(t+jωt /(1+jω) + ur

R/(1+jω)  (5.2.8) 

 

5.3 Dynamisches Verhalten bei statorfestem Spannungszeiger 

Im statorfesten System gilt bei konstantem Spannungszeiger:    

ir(t) = ir(0) * e~t + e~t u*∫
𝑡

0
eT dT 

ir(t) = ir(0)*e-t + e-t*u*(et-1) 

ir(t) = ir(0)*e-t + u*(1-e-t)       (5.3.1) 
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Der Strompunkt ir (t) bewegt sich also auf der durch die Strompunkte ir(0) und u bestimm-

ten Strecke. Dabei bewegt er sich ausgehend von ir(0) auf u zu. 

Die zeitliche Ableitung von ir(t) ist in diesem Falle gegeben durch: 

di(t)/ dt = (u - ir(0) ) *e-t       (5.3.2) 

Die Geschwindigkeit der Bewegung des Strompunkts ist also zur Zeit t=0 am größten und 

nimmt exponentiell ab. 

Zur Zeit t=0 ist die Geschwindigkeit |u - ir(0)I . Sie wird also bestimmt durch den Abstand 

des Punkts u vom Punkt ir(0) . 

Durch Übertragung ins rotorfeste Koordinatensystem erhält man: 

ur(t) = u*e-j (φ+ωt) = ur(0)* e-jωt     (5.3.3) 

Daraus folgt nun:  

irr(t) = irr(0)*e-j (φ+ωt)+ e-j (φ+ωt) * ur(0) *∫
𝑡

0
 eTdT 

irr(t) = irr(0)*e-j (φ+ωt)+ e-j (φ+ωt) * ur(0) *(et-1)   (5.3.4) 

 

5.4 Dynamisches Verhalten bei rotorfestem Spannungszeiger 

Im Folgenden wird von einem Spannungszeiger ausgegangen, der synchron mit dem Ro-

tor umläuft. Dann gilt: ur(t) = ur . Aus (5.2.7) folgt dann: 

irr(t) = irr(0) *e- (t+ jωt) + e- (t+ jωt) ur ∫
𝑡

0
 eT+ jωT) dT 

irr(t) = irr(0) *e- (t+ jωt) + e- (t+ jωt) ur (et+ jωt)-1)/(1+ jω) 

irr (t) =irr(0) + (ur/(1+jω) - irr(0)) *(1- e-(t+ jωt))    (5.4.1) 

Für t -> 00 folgt: 

ir r (t) -> ur/(1+jω)        (5.4.2) 
Ist irr(0) = ur/(1+jω) , so liegt bereits der stationäre Zustand vor. 

Ist irr(0)  ur/(1+jω) , so bewegt sich der Strompunkt irr (t) ausgehend von irr(0) auf einer Spi-

rale, die gegen den Punkt ur/(1+jω) konvergiert. 

Durch Subtraktion des Endwerts ur/(1 + jω) von Gleichung (5.4.1) erhält man: 

 

irr(t) - ur/(1+jω) = irr(0) - ur/(1+jω) e-(t+ jωt)       (5.4.3) 

Aus dieser Form der Darstellung wird deutlich, daß bei der Spirale die Winkelgeschwindig-

keit des Umlaufs -ω und die relative Amplitudenabnahme pro Umlauf  

1 - e-2 π /ω ist 

Bei Vergrößerung von ω nimmt also die relative Amplitudenabnahme pro Umlauf ab. 

Der Betrag der Abweichung vom Endwert ist jedoch unabhängig von ω gegeben durch: 

|irr(t) - ur/(1 + jω)| = |irr(0) - (ur /(1 + jω) | *e-1   (5.4.4) 

Bild 5.1 zeigt die durch Gleichung (5.4.1) beschriebene Übergangsfunktion des komplexen 
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VZ1-Gliedes. 

Bild 5.1 Übergangsfunktion des komplexen VZl-Gliedes 
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5.5 ÜBERGANGSVERHALTEN 

Das Übergangsverhalten wird im rotorfesten System betrachtet. Unter Übergangsverhal-

ten soll hier das Verhalten während des Übergangs von einem Stromzeiger irr1 zu einem 

Zeiger irr2 verstanden werden. Solche Übergänge sind z.B. notwendig, wenn das Moment 

mr von einem Wert mr1 ausgehend den Wert mr2 annehmen soll. Ziel der Betrachtungen ist 

es, Spannungsverläufe ur(t) zu finden, bei denen der Übergang in möglichst kurzer Zeit er-

folgt. 

1. Eine Möglichkeit, den Übergang zu erzielen, ist es, die Spannung ur(t) = ur
2 = irr

2/(1+jw) 

zu wählen. Der Stromverlauf ist dann durch Gleichung (5.4.1) gegeben. Nachteilig ist hier 

die Tatsache, daß der Vektor irr
2 erst nach unendlich langer Zeit erreicht wird und daß das 

Moment mr während des Übergangs starke Schwankungen aufweist. 

2. Eine Verbesserung kann hier erzielt werden, indem der Spannungsvektor ur (t) = ur so 

gewählt wird, daß irr
2 auf dem Weg des Strompunkts irr(t) liegt. Sobald dann irr(t) den Wert 

irr2 erreicht hat, wird der zu ir r2 gehörige Spannungsvektor ur
2 =irr

2 /(1+jω) geschaltet, 

wodurch der stationäre Zustand erreicht ist. 

Mit (5.2.7) erhält man: 

irr2 = irr1 *e-( t + jωt) 
+ ur/(1+jw) * (1-e-(t+j ω t) ) 

ur/(1 + jω) = (irr2 - irr1*e-(t + tω t) / (1-e-(t + j ω t)) 

ur/(1 + jω) = irr1 +(irr2 - ir r1)/(1-e-(t+jωt)    (5.5.1) 

Die Zeitdauer t des Übergangs bestimmt maßgeblich den Betrag des Spannungszeiger ur. 

Bei t->0 strebt Iur| -> oo. Die Zeitdauer t kann nun so gewählt werden, daß ur = Umax ist, 

und damit den größten realisierbaren Betrag hat. 

Aus (5.5.1) folgt mit ur = umaxejφ
: 

  ………………………….       (5.5.2) 

Diese Gleichung ist eine Bestimmungsgleichung für t und φ . 

3. Eine dritte Möglichkeit besteht darin, während des Übergangs einen im statorfesten 

System konstanten Spannungsvektor u zu wählen. 

Aus (5.3.4) erhält man:  

  irr2 = irr1 *e-( t + jωt) + e-( t + jωt)*ur(0) * (et -1) 

ur(0) = (irr2*e(t + jω t) - irr1 )/ (et -1)     (5.5.3) 

Hierbei ist t wieder die Zeitdauer des Übergangs. 

Setzt man ur(0) = umaxejφ , so erhält man: 

                                                      (5.5.4) 

Dies liefert eine Bestimmungsgleichung für t und φ. 
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6. Speisung der Synchronmaschine durch einen Gleichspannungszwi-
schenkreis 

6.1 Schaltung 

Bild 6.1 zeigt das Ersatzschaltbild von Pulswechselrichter und Synchronmotor. Die perma-

nentmagnetisch erregte Synchronmaschine wird im vorliegenden Fall über drei steuerbare 

Halbbrücken aus einem Gleichspannungskreis gespeist. Da die Gleichspannung ihrerseits 

durch Gleichrichtung und Glättung aus einem Dreiphasennetz gewonnen wird, wird der 

Gleichspannungskreis als Gleichspannungszwischenkreis bezeichnet. Die drei Halbbrü-

cken arbeiten als dreiphasiger Pulswechselrichter. 

Als Schaltelemente werden MOS-FET's mit integrierter Freilaufdiode verwendet. Diese 

Bauelemente zeichnen sich durch kurze Schaltzeiten und hohe Belastbarkeit aus. Gegen-

über älteren Schaltungen, bei denen Thyristoren oder GTO's verwendet werden, ergibt 

sich durch die Verfügbarkeit von MOS-FET's entsprechender Leistung und Spannungsfes-

tigkeit eine Vereinfachung des Schaltungsaufbaus und eine Verbesserung des Schaltver-

haltens. Auch im Vergleich zu bipolaren Transistoren zeichnen sich die verwendeten 

MOS-FET's durch günstigere Eigenschaften aus. 

Im folgenden werden die verwendeten Schaltelemente vereinfachend als ideale Schalter 

betrachtet. 

Ferner werden mögliche Schwankungen der Zwischenkreisspannung infolge ungenügen-

der Pufferung bei großer Strombelastung nicht berücksichtigt. Auch Probleme, die bei der 

Energieaufnahme durch den Zwischenkreis bei Bremsvorgängen entstehen, werden ver-

nachlässigt. Die Zwischenkreisspannung wird also als konstant angenommen. Eine Be-

schreibung der Schaltzustände und Spannungszeiger befindet sich in /3 ORLIK/. 
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Bild 6.1 Schaltbild des Synchronmotors mit Gleichspannungszwischenkreis 

  

Bild 6.2 Spannungszeigersechseck mit Inkreis und Umkreis 
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6.2 SCHALTZUSTÄNDE UND SPANNUNGSZEIGER 

Bei drei Halbbrücken mit jeweils zwei Schaltzuständen gibt es 8 Schaltzustände. Zwei die-

ser acht Schaltzustände bewirken Kurzschluß der Stränge, so daß bezüglich der Wirkung 

auf den Motor 7 verschiedene Schaltzustände vorhanden sind. 

Das Potential V0 des Maschinensternpunkts ergibt sich zu jedem Zeitpunkt als arithmeti-

scher Mittelwert der Klemmenpotentiale V1, V2 und V3 . 

Somit können aus gegebenen Klemmenpotentialen die Strangspannungen U1 , U2 und U3 

bestimmt werden. 

Tabelle 6.1 zeigt die bei den acht möglichen Schaltzuständen auf- tretenden Potentiale 

und Strangspannungen. 

Zust. V1 V2 V3 V0 U1 U2 U3 

0 0 0 0 0 0 0 0 

1 Uzk 0 0 1/3 Uzk 

 

 

2/3 Uzk -1/3 Uzk -1/3 Uzk 

2 Uzk Uzk 0 2/3 Uzk 1/3 Uzk 1/3 Uzk -2/3 Uzk 

3 0 Uzk 0 1/3 Uzk -1/3 Uzk 2/3 Uzk -1/3 Uzk 

4 0 Uzk 

 

Uzk 2/3 Uzk -2/3 Uzk 1/3 Uzk 1/3 Uzk 

5 0 0 Uzk 1/3 Uzk -1/3 Uzk -1/3 Uzk 2/3 Uzk 

6 Uzk 0 Uzk 2/3 Uzk 1/3 Uzk -2/3 Uzk 1/3 Uzk 

7 Uzk Uzk Uzk Uzk 0 0 0 

Tabelle 6.1: Potentiale und Strangspannungen bei den möglichen 8 Schaltzuständen 

Aus den Strangspannungen können gemäß Gleichung (1.1.3.5) die komplexen Span-

nungszeiger gebildet werden. 

Die den Schaltzuständen 1 bis 6 zugeordneten Spannungszeiger haben einen einheitli-

chen Betrag. Dieser hat - wie hier am Beispiel des dem Schaltzustand 1 zugeordneten 

Spannungszeigers gezeigt wird - den Betrag: 

|U| = 2/3 * | U1 + a*U2 + a2 *U3 |, 

wobei a = exp(j*2ω/3) = -1/2 + j*/√2 ist. 

Es folgt nun: 

|U| =2/3 * 2/3*Uzk- l/3*Uzk * (a + a2 ) | 

|U| =2/9 *Uzk * | 2- (a + a2 )| 

|U| =2/9 *Uzk * 3 =2/3 Uzk  (6.2.1) 
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Tabelle 6.2 zeigt Betrag, Winkel und Komponenten der den Schaltzuständen zugeordne-

ten Spannungszeiger im statorfesten System. 

Zust. n |Un| | arg (Un) Ux Uy 

0 0 - 0 0 

1 2/3 Uzk 0° 2/3 Uzk 0 

2 2/3 Uzk 60° 1/3 Uzk 1/√3 Uzk 

3 2/3 Uzk 

 

120° -1/3 Uzk 1/√3 Uzk 

4 2/3 Uzk 180° -2/3 Uzk 0 

5 2/3 Uzk 240° -1/3 Uzk -1/√3  Uzk 

6 2/3 Uzk 300° 1/3 Uzk -1/√3 Uzk 

7 0 - 0 0 

Tabelle 6.2: Betrag,Winkel und  Spannungszeiger bei den möglichen Schaltzuständen 

Aus Tabelle 6.2 ist ersichtlich, daß die Spannungszeiger Ui bis Ue ein regelmäßiges 

Sechseck aufspannen. Bild 6.2 zeigt dieses Spannungszeigersechseck mit eingezeichne-

tem Inkreis und Umkreis. 

Es wird nun ein Zeitabschnitt T betrachtet. Innerhalb dieses Zeitabschnitts wird eine Folge 

un von Spannungszeigern geschaltet, die jeweils während der Zeitdauer tn anliegen. 

Der resultierende Spannungszeiqer ur wird nun definiert durch: 

ur = 1/T * ∑  Tn *Un       (6.2.2) 
Der so definierte resultierende Spannungszeiger kann die Spannungszeigerfolge bezüg-

lich der Wirkung auf den Stromzeiger ersetzen, wenn der betrachtete Zeitabschnitt genü-

gend klein ist. Werden nun die Spannungszeiger un aus den verfügbaren 

Spannungszeigern Uo bis U6- ausgewählt, so folgt, daß der gemäß (6.2.1) gebildete resul-

tierende Spannungszeiger stets innerhalb des Spannungszeigersechsecks liegt. 

Im stationären Zustand ist ein resultierender Spannungszeiger erforderlich, der einen kon-

stanten Betrag hat und mit konstanter Winkelgeschwindigkeit umläuft. 

Hieraus folgt, daß im stationären Zustand der Betrag der verfügbaren Spannungszeiger 

durch den Radius des Inkreises des Spannungszeigersechsecks begrenzt ist. 

Der Betrag des Spannungszeigers, dessen Länge gleich dem Radius des Inkreises des 

Spannungszeigersechsecks ist, wird mit Umax bezeichnet. Also gilt 

Umax =’√𝟑 /2 * |Ui | =√𝟑/2 * 2/3 Uzk 
 

Umax = 1/√𝟑  Uzk = 0,577 U      (6.2.3) 
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7. METHODEN ZUR SPANNUNGSZEIGER-SYNTHESE 

7.1 VARIATION DES STERNPUNKTPOTENTIALS 

Unter Methoden zur Spannungszeigersynthese werden hier Methoden verstanden, mit de-

nen aus der konstanten Gleichspannung des Gleichspannungszwischenkreises quasikon-

tinuierliche Strangspannungen erzeugt werden können. 

Hierfür gibt es eine Reihe von in der Literatur beschriebenen und in der Praxis verwende-

ten Verfahren. 

Die Art des verwendeten Verfahrens hängt dabei wesentlich von der Art des Schaltungs-

technik ab (analog oder digital). 

Zunächst soll hier eine Betrachtung angestellt werden, die davon ausgeht, daß abhängig 

von den vorgegebenen Strangsollspannungen Us1 , Us2 und Us3 kontinuierliche Klemmen-

potentiale V1, V2 und V3 erzeugt werden können gemäß der Formel: 

Vi(t) = Uo(t) +Usi(t)          (i=l,2,3)    (7.1.1) 

Dabei ist U0(t) eine zunächst frei wählbare Funktion. 

Für die erzeugbaren Klemmenpotentiale gilt dabei die durch die Zwischenkreisspannung 

Uzk gegebene Einschränkung : 

0V <= Vi(t) <= Uzk (i=l,2,3)    (7.1.2) 

Es wird nun davon ausgegangen, daß bei der Bestimmung der Strangsollpannungen be-

reits berücksichtigt ist, daß die Summe der Strangspannungen zu jedem Zeitpunkt Null 

ergibt:   Us1 + Us2 + Us3 = 0     (7.1.3) 

Für das Sternpunktpotential V0 folgt dann: 

V0 = 1/3 ⋆(V1 + V2 + V3 ) = U0    (7.1.4) 

Die Funktion U0(t) bestimmt also den zeitlichen Verlauf des Sternpunktpotentials. 

Die Strangspannungen U1, U2 und U3 sind gegeben durch: 

  Ui(t) = Vi(t) – V0 (t) = Usi(t)    (i=l,2,3)    (7.1.5) 

Dies bedeutet, daß unabhängig von der Wahl von U0 die Strangspannungen stets gleich 

den Sollspannungen sind. Im einfachsten Falle wird man das Sternpunktpotential konstant 

halten und wählen 

     V0 = U0 (t) = 1/2 Uzk . 

Bei Verwendung dieser Methode konstanten Sternpunktpotentials gilt also: 

Vi(t) = 1/2 Uzk +Usi(t) (i=l,2,3)    (7.1.6) 

Hieraus folgt, daß dann die Erzeugung von Strangspannungen im Bereich von -1/2 Uzk bis 

+1/2 Uzk möglich ist. 

Bild 7.1 zeigt den Verlauf der Strangsollspannungen bei Vorliegen eines Dreiphasensys-

tem, wie es beim stationären Betrieb des Synchronmotors auftritt. 
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Betrachtet man den Verlauf des Strangsollspannungen, so wird deutlich, daß zu keinem 

Zeitpunkt eine Spannung den Maximalwert annimmt, während eine andere Spannung den 

Minimalwert annimmt. Dies führt zu der Überlegung, die Funktion U0(t) so zu bestimmen, 

daß der gemäß 7.1.2 verfügbare Bereich der Klemmenpotentiale möglichst gut ausgenutzt 

wird. Es wird nun definiert: 

Umax (t) = max( Us1(t) ,Us2 (t) ,Us3(t) )    (7.1.7) 

Umin(t) = min( Us1(t) ,Us2 (t) ,Us3(t) )   

Analog werden die Größen Vmax (t) und Vmin (t) bestimmt 

.Dann gilt: 

Vmax(t) = U0(t) + Umax (t)      (7.1.8) 

Vmin (t) = U0(t) + Umin(t) 

 

Bild 7.1 Dreiphasiges sinusförmiges Spannungssystem 

Bei gleichmäßiger Ausnutzung des zur Verfügung stehenden Bereichs gilt zu jedem Zeit-

punkt: 

Vmax(t) +Vmin(t) = Uzk      (7.1.9) 

Mit den Gleichungen (7.1.8) folgt dann: 

 U0(t) = 1/2 ⋆(Uzk - Umax(t) - Umin(t))     (7.1.10) 

Es sei hier noch angemerkt, daß es wegen (7.1.3) zu jedem Zeitpunkt t ein i aus(1,2,3) 

gibt, so daß gilt: 

Ui =-Umax(t)-Umin(t)       (7.1.11) 
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Diese Methode der Bestimmung des Strangpotentiale soll hier als Methode der symmetri-

schen Variation des Sternpunktpotentials zur Vergrößerung des Spannungsbereichs be-

zeichnet werden. 

In den Bildern 7.2 und 7.3 sind die zeitlichen Verläufe der Klemmenpotentiale bei kon-

stantem Sternpunktpotential und bei Anwendung der oben beschriebenen Methode der 

symmetrischen Variation der Sternpunktpotentiale ausgehend von den in Bild 7.1 gezeig-

ten Strangspannungen gegenübergestellt. 

Durch Einsetzen von (7.1.10) in (7.1.8) folgt: 

  Vmax(t) = 1/2 ⋆( Uzk + Umax (t) - Umin ( t) )   (7.1.12) 

  Vmin(t) = 1/2 ⋆(Uzk - Umax(t) + Umin(t)) 

Aus jeder dieser Gleichungen folgt mit (7.1.2) : 

Umax(t) -Umin(t) <=Uzk      (7.1.13) 

 
Seien die Strangsollspannungen des Dreiphasensystems gegeben durch: 

U1(t) = U⋆sin(ωt) 

U2(t) = U⋆sin(ωt+2/3 *π)      (7.1.14) 

U3(t) = U⋆sin(ωt+4/3 *π) . 

Für das zeitliche Maximum der linken Seite von Gleichung (7.1.13) ergibt sich dann der 

Wert √3 ⋆U . 

Dieses Maximum wird z.B. bei ωt = 2/3 *π angenommen (siehe Bild 7.1) . 

Aus Gleichung (7.1.13) ergibt sich also für die Amplitude U der erzeugbaren Strangspan-

nungen bei Verwendung der Methode der Variation des Sternpunktpotentials: 

U <= Uzk/√3 = 0,577*Uzk     (7.1.15) 

Bei konstantem Sternpunktpotential gilt demgegenüber: U <= 0,5*Uzk, 
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Durch Anwendung der Methode der Variation des Sternpunktpotentials ergibt sich also 

eine Vergrößerung des Spannungsbereichs um ca. 15% . 

Bild 7.2 Potentialverläufe bei konstantem Sternpunktpotential 
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Bild 7.3 Potentialverläufe bei symmetrischer Variation des Sternpunktpotential 

 

Unter Abkehr von der Potentialsymmetrie kann diese Methode dahingehend variiert wer-

den, daß dem Klemmenpotential mit dem jeweils geringsten Wert das Nullpotential zuge-

ordnet wird. Die Anwendung dieser Methode ist vorteilhaft hinsichtlich der Schalthäufigkeit 

der Schaltelemente bei Erzeugung der Potentiale durch Pulsbreitenmodulation, da hier im 

Strang mit dem jeweils kleinsten Klemmenpotential die Schaltvorgänge ganz entfallen kön-

nen. 

Diese Methode soll hier Methode der kleinsten Potentiale genannt werden, da die dabei 

erzeugten Potentiale zu jedem Zeitpunkt die kleinstmöglichen Wert besitzen. 

Bild 7.4 zeigt den bei Anwendung dieser Methode der kleinsten Potentiale entstehenden 

zeitlichen Verlauf der Klemmenpotentiale, wenn die Strangsollspannungen ein Dreipha-

sensystem bilden. 
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Bild 7.4 Potentialverläufe bei minimalem Sternpunktpotential 

 

Es ist offensichtlich, daß die Bereichsvergrößerung auch hier in der oben genannten Höhe 

eintritt. 

7.2 SPANNNUNGSZEIGERSYNTHESE NACH DEM 

UNTERSCHWINGUNGSVERFAHREN 

Ein für analoge Schaltungstechnik besonders geeignetes Verfahren ist das Unterschwin-

gungsverfahren. 

Hierbei werden pro Strang zwei analoge Referenzsignale benutzt. Das eine Referenzsig-

nal ist eine dem Sollwert der entsprechenden Strangspannung proportionale Funktion, 

während das andere allen Strängen gemeinsame Referenzsignal eine Dreiecksfunktion 

ist. Die beiden Referenzsignale werden mit einem Komparator verglichen, der seinerseits 

die zugehörige Halbbrücke steuert. 

Die Frequenz des Dreieckssignals muß hierbei wesentlich höher als die maximale Fre-

quenz der Strangsollspannung gewählt sein. 

Die Proportionalität zwischen Strangsollspannung und dem zugehörigen Referenzsignal 

muß so gewählt sein, daß bei einer Strangsollspannung von 1/2 Uzk die Amplitude des bei-

den Referenzsignale gleich groß ist. Das Unterschwingungsverfahren bewirkt die Umset-

zung des Strangspannungssollwerts in eine Pulsbreitenmodulation des Klemmen-

potentials. Der Strangspannungssollwert OV erzeugt dabei das Tastverhältnis 1 und somit 
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einen Mittelwert des Klemmenpotentials von 1/2 Uzk . 

Die Funktionstüchtigkeit dieses Verfahrens ist nur dann unmittelbar evident, wenn man an-

nimmt, das Sternpunktpotential konstant bleibt und den Wert 1/2 Uzk hat. 

Tatsächlich schwankt jedoch das Sternpunktpotential bei Verwendung dieser Methode und 

nimmt abhängig von den Klemmenpotentialen die Werte OV , 1/3 Uzk , 2/3 Uzk , Uzk an. 

7.3 SPANNUNGSZEIGERSYNTHESE DURCH PULSBREITENMODULATION 

7.3.1 ALLGEMEINES 

Bei Verwendung von digitaler Schaltungstechnik entspricht dem Unterschwingungsverfah-

ren das Verfahren der voneinander unabhängigen Pulsbreitenmodulation(PBM) der Klem-

menpotentiale. 

Betrachtungen zur Pulsbreitenmodulation finden sich in /3 ORLIK/. 

Hierbei werden aus den in digitaler Form vorliegenden Strangsollspannungen Steuerfakto-

ren berechnet. 

Dabei ist der Steuerfaktor xi definiert durch: 

xi = Ti /Tp ,       (7.3.1.1) 

wobei Ti die Dauer der Aufschaltung der Zwischenkreisspannung auf den Strang i und TP 

die Taktzeit der Pulsbreitenmodulation ist. 

Für die Bestimmung der Steuerfaktoren erhält man in Analogie zu Gleichung (7.1.6) die 

Gleichung: 

xi = 1/2 + Usi/Uzk      (7.3.1.2) 

Die Richtigkeit dieser Formel unter Berücksichtigung der Unstetigkeit des zeitlichen Ver-

laufs der Strangspannungen wird im nächsten Abschnitt gezeigt. 

Aus der Definition der Steuerfaktoren xi ergibt sich unmittelbar die Gültigkeit der Unglei-

chung: 

0 <= xi <= 1     (7.3.1.3) 

Bei Benutzung der Formel (7.3.1.2) können also Strangspannungen Us im Bereich: 

-1/2 *Uzk <= Us <= 1/2 *Uzk    (7.3.1.4) 

realisiert werden. 
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Bild 7.5 strangspannungsverlauf des 1. Strangs bei Pulsbreitenmodulation 

Bild 7.6 Strangspannungsverlauf des 1. Strangs bei Pulsbreitenmodulation 

 

Wichtig für die Güte des Verfahrens ist die Taktzeit TP. 

Bei der Bemessung der Taktzeit TP ist die Taktzeit Ts des Steueralgorithmus zu berück-

sichtigen, der die Strangspannungssollwerte liefert. 
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Die Steuerfrequenz fs = 1/TS muß groß gegenüber der höchsten vorkommenden Strang-

spannungsfrequenz sein. Die Frequenz der Pulsbreitenmodulation fP = 1/TP sollte ein gan-

zes Vielfaches der Steuerfrequenz fs sein. Im einfachsten Fall ist fs = fP . 

Ausgehend von dem in Bild 7.1 gezeigten Dreiphasensystem der Strangsollspannungen 

wird in Bild 7.5 der zeitliche Verlauf des Klemmenpotentials eines Strangs bei Anwendung 

dieses Verfahrens gezeigt. 

Die daraus resultierende Strangspannungsfunktion ist in Bild 7.6 dargestellt. 

Die Tatsache, daß die Strangspannungsfunktion sehr stark von den Klemmenpotential-

funktion abweicht, erklärt sich aus der Tatsache, daß das Sternpunktpotential bei Verwen-

dung dieses Verfahrens nicht konstant ist. 

7.3.2 BEWEIS DER KORREKTHEIT DES VERFAHRENS 

Es soll nun untersucht werden, ob die bei Pulsbreitenmodulation der Klemmenpotentiale 

erzeugten Strangspannungen den vorgegebenen Strangsollspannungen entsprechen. 

Um die Gültigkeit der folgenden Überlegungen möglicht allgemein zu halten, wird hier nur 

benutzt, daß die Zwischenkreisspannung während der Zeitdauer Ti innerhalb des Inter-

valls TP auf den Strang i geschaltet ist. 

über die Anzahl der dabei pro Strang verwendeten Spannungsblöcke und ihre Lage im In-

tervall TP wird keine Voraussetzung gemacht. 

Wie bereits oben gesagt, liegt zu jedem Zeitpunkt innerhalb des Intervalls TP einer von 7 

diskreten Spannungszeigern an (siehe Tabelle 6.1). 

Sei tn die Gesamtdauer der Zeit innerhalb des Intervalls TP, in der der Spannungszeiger 

Un anliegt (n=1..7). 

Aus Tabelle 6.1 entnimmt man nun: 

T1 = ti+t2+te+t? 

T2  = t2+t3+t4+I7       (7.3.2.1) 

T3 = t«+t5+I6+t7 

Für den durch Mittelwertbildung gewonnenen resultierenden Spannungszeiger U gilt: 

TP *U = Z tn *Un (7.3.2.2) 

Wegen UB+3 = -Un für n=l,2,3 folgt hieraus: 

TP*U = Z (tn-tn + 3)*Un       (7.3.2.3) 

Mit U2 = Ui + U3 erhält man: 

TP *U = (ti-t4 + t2-ts)*Ui + (t3-t6 + t2-ta)*U3 

TP*U = (Ti - Ts)*Ui + (T2 - T3)*U3     (7.3.2.4) 

Unter Benutzung der Definition (7.3.1.1) der Steuerfaktoren xi ergibt sich: 

U = (x1 - x3 ) *U1 + (x2 - x3 ) *U3      (7.3.2.3) 
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Mit der Gleichung (7.3.1.2) erhält man: 

  y= (Us1 -us3)/uzk *y1 + (us2 -us3)/uzk *y3   (7.3.2.6) 

Mit yH = -Ul - y3 folgt: 

y = us1*y1/uzk + us2*y3/uzk + us3*ya/uzk (7.3.2.7) 

 

Unter Verwendung der Definition der Spannungszeiger erhält man: 

  U = U8I*2/3+ US2*2/3⋆a + Us3*2/3⋆a2 ,   (7.3.2.8) 

wobei a = exp(j*2*π/3) ist. 

U = 2/3 *(Usi + US2*a + Us3*a2) 

Die rechte Seite dieser Gleichung ist gemäß Definition der komplexe Sollspannungszeiger 

Us , so daß gilt : U = Us . 

Damit ist in einem sehr allgemeinen Sinne die Korrektheit aller Verfahren, die eine Puls-

breitenmodulation der Klemmenpotentiale gemäß Gleichung 7.3.1.2 benutzen, nachgewie-

sen. Bei diesem Beweis wurde die Wirkung der tatsächlich wirkenden Spannungszeiger 

aufgrund der Beziehungen zwischen den Spannungszeigern durch die Wirkung der drei 

Zeiger U1 , U3 und Ua ersetzt. 

7.3.3 VARIATION DES STERNPUNKTPOTENTIALS BEI PBM 

Es wird nun der zeitliche Verlauf der Strangspannungen während einer Taktperiode T des 

Pulsbreitenmodulators betrachtet. Bild 7.7 zeigt einen angenommenen Verlauf der Klem-

menpotentiale und den daraus resultierenden Verlauf der Strangspannungen während ei-

ner Taktperiode TP des Pulsbreitenmodulators. 

 

Bild 7.7 Potentiale und Spannungen während einer 
Taktperiode des Pulsbreitenmodulators 
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Aus dem Bild wird ersichtlich, daß während TP (maximal) vier Schaltzustände vorliegen. 

Die Zeitdauern des Vorliegens der Schaltzustände in der Reihenfolge ihres Auftreten wer-

den mit n bezeichnet. Dabei ist auch Ti = 0 zulässig. Damit ist gewährleistet, daß die An-

zahl der Schaltzustände stets vier ist. Während Ti und r« liegt der Nullspannungszeiger 0. 

an, so daß insgesamt maximal drei verschiedene Spannungszeiger während Tp anliegen. 

Werden nun alle Steuerfaktoren xi im Sinne einer Variation des Sternpunktpotentials um 

den gleichen Betrag erhöht oder gesenkt, so bedeutet dies, daß sich alle Schaltzeitpunkte 

um einen gleichen Betrag verschieben. Daraus ergibt sich, daß die Zeitdauern 12 , Ta und 

Ti+14 konstant bleiben. 

Die Anwendung der Methode der Variation des Sternpunktpotentials bewirkt hier also eine 

andere Verteilung des Zeitraums, während dessen der Nullvektor geschaltet ist, innerhalb 

des Intervalls T. 

Ihre Anwendung bewirkt jedoch auch hier eine Vergößerung des Spannungsbereichs, da 

sie den Bereich vergrößert, in dem die Steuerfaktoren innerhalb des zulässigen Intervalls 

L°, 13 liegen. Bei Anwendung der Methode der Variation des Sternpunktpotentials tritt an-

stelle der Gleichung (7.3.1.2) die folgende Gleichung für die Bestimmung des Steuerfak-

tors xi : 

xi = 1/2 + (Usi-1/2 *(Umax(t) + Umin (t) )/Uzk   (7.3.3.1) 

7.3.4 LAGE DER SPANNUNGSZEIGER BEI PBM 

Nun wird untersucht, welche relative Lage die erzeugenden Spannungszeiger zum er-

zeugten Spannnungszeiger haben. 

,Aufgrund der Symmetrie der Maschine ist es ausreichend hierzu einen Spannungszeiger 

im 1. Sextanten zu betrachten. Jeder in einem anderen Quadranten gelegene Spannungs-

zeiger läßt sich geeignete Umnumerierung der Stränge auf den hier betrachteten Fall zu-

rückführen. 

Wir gehen von einem Spannungszeiger U = U*eJ° im 1. Sextanten aus. Dann gilt: 

0 <= ß <= n/3 . 

Für die Komponenten Ux und Uy des Spannungszeigers U gilt dann: 

Ux = U*cos(ß) Uy = U*sin(ß) 

Für die Strangspannungen erhält man durch Projektion des Spannungszeigers U auf die 

den Strängen entsprechenden Achsen gemäß den Beziehungen (1.1.3.9) bis (1.1.3.11) 

die Ungleichungen: 

0,5*U <= Ui <= U 

-0,5*U <= U2 <= 0,5*U 
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-U <=Ua <= -0,5*U 

Sei Ti der Schaltzeitpunkt, bei dem im Strang i die Umschaltung von der Spannung Uzk zur 

Spannung 0V erfolgt. 

Nach Gleichung (7.3.1.2) folgt dann aus den obigen drei Ungleichungen für die Schaltzeit-

punkte die Ungleichung: 

T3 <= T2 <= Ti 

Dies bedeutet, daß sich für die Schaltzustände gemäß Tabelle 6.1 die folgende Reihen-

folge ergibt: 7,2,1,0 

Aus Tabelle 6.1 entnimmt man, daß hierzu die Spannungszeigerreihenfolge: 

Uo , Ui , U2 , Uo gehört. 

Der Spannungszeiger wird also bei Verwendung des Verfahrens der Pulsbreitenmodula-

tion stets aus den dem zu erzeugenden Spannungs zeiger benachbarten Spannungszei-

gern und dem Nullzeiger erzeugt 

Das Verfahren der Spannungszeigersynthese durch Pulsbreitenmodulation der Klemmen-

potentiale erweist sich also äquivalent zu dem noch zu beschreibenden 3-Vektor-Verfah-

ren. Wählt man die Methode der kleinsten Potentiale, so ist das Verfahren der 

Spannungszeigersynthese durch Pulsbreitenmodulation identisch mit dem 3-Vektor-Ver-

fahren. Der Unterschied zwischen den beiden Verfahren besteht allein im Rechengang zur 

Bestimmung der Schaltzeitpunkte. 

 

7-4 SPANNUNGSZEIGERSYNTHESE DURCH KOMBINATION VON 

SPANNUNGSZEIGERN 

7.4.1 ALLGEMEINES 

Verfahren der Kombination von Spannungszeigern bestehen darin, einen vorgebenen 

Spannungszeiger durch eine Folge von Spannungszeigern Ui und eine entsprechende 

Folge von Wirkungsdauern ti zu realisieren. 

Das allgemeinste Verfahren macht keine Einschränkung hinsichtlich der Länge der Wir-

kungdauern. Es ist für die praktische Anwendung nicht geeignet, da für das Durchlaufen 

des Algorithmus zur Bestimmung des nächsten Spannungszeigers und seiner Wirkungs-

dauer eine endliche Zeit benötigt wird, die möglicherweise größer ist als die berechnete 

Wirkungsdauer des gerade geschalteten Spannungszeigers . 

Die Anpassung an die Notwendigkeiten der Digitaltechnik erfordert Verfahren , die mit ei-

ner festen Taktzeit arbeiten, wobei die Taktzeit größer als die Zykluszeit des Berech-

nungsalgorithmus sein muß. 
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Diese Verfahren lassen sich klassifizieren durch die Zahl der Spannungszeiger, die wäh-

rend eines Taktes geschaltet werden. Dementsprechend unterscheiden wir 1-Vektor-Ver-

fahren, 2-Vektor- Verfahren und 3-Vektor-Verfahren, die im Folgenden beschrieben 

werden. 

7.4.2 DAS 1-VEKTOR-VERFAHREN 

Hier haben alle geschalteten Spannungszeiger die gleiche Wirkungsdauer TP. Es stehen 

demzufolge nur die in Bild 7.8 gezeigten sieben diskreten Spannungszeiger zur Verfü-

gung. Die Bestimmung des zu schaltenden Spannungszeiger in Abhängigkeit von einem 

vorgegebenen Sollspannungszeiger Us erfolgt im einfachsten Falle so, daß stets der 

Spannungszeiger Ui gewählt wird, für den der Differenzzeiger Us - Ui die kleinste Länge 

hat. Auf diese Weise entstehen Gebiete in der Spannungszeigerebene. Allen 

 

Bild 7.8 realisierbare Spannungspunkte beim 1-Vektor-Verfahren 

in einem Gebiet liegenden Sollspannungszeigern wird der gleiche erzeugte Spannungszei-

ger zugeordnet. Es ist erkennbar, daß dieses Verfahren ein sehr grobes ist. 

Für das Maximum des Fehlerzeigerbetrags |US - Ui | ,das als Kriterium für die Güte des 

Verfahrens geeignet ist, gilt hier: 

max( |Us - Ui |) > 1/2 ⋆|Ui | 

Di e Auswirkungen der Grobheit des Spannungserzeugungsverfahrens auf die Bahn des 

Stromzeigers i können jedoch bei genügend kurzer Taktzeit TP in zumutbaren Grenzen ge-

halten werden, da die Sollwerte des Spannungszeigers jeweils in Abhängigkeit vom Ist-

wert des Stromzeigers bestimmt werden und somit eine Regelschleife vorliegt. 

Eine Verbesserung des Verfahrens läßt sich dadurch erzielen, daß bereits in den Algorith-

mus zur Bestimmung des Spannungszeigers ein Regelalgorithmus eingebaut wird. Diese 
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Methode wird von B. Schwarz /ll/ benutzt. Hierbei wird der zeitlich integrierte Differenzzei-

ger Us - Ui zusätzlich zum aktuellen Sollzeiger als Kriterium für die Auswahl des zu schal-

tenden Spannungszeigers benutzt. Somit wird eine gegenüber dem einfachen Verfahren, 

bei dem erst die Auswirkung auf den Stromzeiger zur Korrektur benutzt wird, wesentlich 

kürzere Reglerzeitkonstante erzielt. 

7.4.3 DAS 2-VEKTOR-VERFAHREN 

Pro Taktperiode gelangen hier jeweils zwei Spannungszeiger zum Einsatz, wobei die Wir-

kungsdauer der Spannungszeiger veränderlich ist. 

Diesen beiden Spannungszeigern wird nun durch zeitliche Mittelwertbildung über die Takt-

periode TP ein resultierender Spannungszeiger U zugeordnet, der in den folgenden Über-

legungen verwendet wird.  

Sind Ui und Uk die geschalteten Spannungszeiger, so berechnet sich der resultierende 

Spannungszeiger U zu:U = (ti*Ui + (Tp-ti ) *Uk)/TP    (7.4.3.1) 

Dabei ist ti die Wirkungsdauer des Spannungszeigers Ui. Führt man hier den Steuerfaktor 

x = ti/TP ein, so folgt: 

U = x*Ui + (1-x)*Uk     (7.4.3.2) 

, wobei 0<=x<=1 ist. 

Dies bedeutet, daß der resultierende Spannungspunkt U stets auf der die beiden Punkte 

Ui und Uk verbindenden Strecke liegt. Bei Variation des Steuerfaktors x innerhalb der zu-

lässigen Grenzen durchläuft der Punkt U die gesamte Ui und Uk verbindende Strecke. 

Bild 7.9 zeigt die Menge aller nach dem 2-Vektorverfahren erzeugbaren resultierenden 

Spannungspunkte. 

Bild 7.9 realisierbare Spannungspunkte beim 2-Vektor-Verfahren 
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Ein Vergleich mit den Verhältnissen bei dem 1-Vektorverfahren, bei dem nur sechs dis-

krete Spannungspunkte zur Verfügung stehen, zeigt, daß durch Verwendung dieses Ver-

fahrens eine wesentliche Verbesserung des Genauigkeit zu erzielen ist. 

Bei einer praktischen Realisierung dieses Verfahrens bereitet die Auswahl einer Kombina-

tion Ui , Uk aus der Vielzahl der zur Verfügung stehenden Kombinationen Schwierigkeiten. 

Man wird sich deshalb auf die Kombinationen eines Spannungszeigers Ui mit dem 

Nullspannungszeiger U0 beschränken. 

Bild 7.10 zeigt die dann realisierbare Menge von Spannungspunkten. 

Bild 7.10 realisierbare Spannungspunkte beim eingeschränkten 2-Vektor-Verfahren 

Die Auswahl des Spannungszeigers Ui und des Steuerfaktors x kann dann wieder nach 

dem Kriterium des kleinsten Fehlerzeigerbetrags erfolgen. 

Für das Maximum des Fehlerzeigerbetrags gilt hier: 

max(|US - U|) = 1/4 *√3⋆|Ui |    (7.4.3.3) 
 

Die Korrektur des bei der Spannungserzeugung nach diesem Verfahren entstehenden 

Fehlers kann wieder auf dem Wege über die Rückkopplung durch den gemessenen 

Stromzeiger oder wie beim 1-Vektor- 

Verfahren beschrieben, durch einen in den Spannungszeigersynthesealgorithmus einge-

bauten Regelalgorithmus erfolgen. Bei der Benutzung dieses Verfahrens wird häufig der 

Fall auftreten, daß in mehreren aufeinanderfolgenden Taktperioden der ausgewählte 

Spannungszeiger Ui identisch ist. Dies ist insbesondere beim stationären Betrieb des Mo-

tors zu erwarten. 

Eine Verringerung der Schalthäufigkeit der Schaltelemente läßt sich hier erzielen, indem in 
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aufeinanderfolgenden Taktperioden jeweils die zeitliche Reihenfolge der beiden geschalte-

ten Zeiger vertauscht wird. Unter der oben gemachten Voraussetzung entfällt dann pro 

Taktperiode die Umschaltung einer Halbbrücke. 

7.4.4 DAS 3-VEKTOR-VERFAHREN 

Hier wird der resultierende Spannungszeiger U durch Kombination von drei Spannungs-

zeigern U1 , U2 und U3 erzeugt. 

Sind t1 und t2 die Wirkungdauern der beiden ersten Spannungszeiger, so gilt: 

U= (t1*U1 + t2*U2 + (Tp-t1-t2 ) *U3 )/TP    (7.4.4.1) 

Mit den Steuerfaktoren xi = ti/TP und xz = t2/TP folgt nun: 

  U = x1 *U1 + x2 *U2 + (1-x1-x2)*U3    (7.4.4.2) 

Dies Gleichung besagt, daß der resultierende Spannungspunkt U stets innerhalb des von 

den Spannungspunkten U1, U2 und U3 aufgespannten Dreiecks liegt. 

Zu einem beliebigen Punkt U innerhalb des von den Spannungspunkten U1 , U2 und U3 

aufgespannten Dreiecks gibt es andererseits stets Steuerfaktoren x1 und x2 , so daß dieser 

Punkt der resultierende Spannungspunkt ist. 

Durch Aufspaltung der komplexen Gleichung (7.4.4.2) in zwei reelle Gleichungen und Um-

formung derselben folgt: 

Ux = x1*(U1x - U3x) + x2*(U2x-U3x) + U3x    (7.4.4.3) 

Uy = x1⋆(U1y - U3y) + x2*(U2y-U3y) + U3y 

Durch Auflösung dieser Gleichungen nach den den Steuerfaktoren x1 und x2 erhält man 

die Bestimmungsgleichungen für die Steuerfaktoren. 

Mit der Einschränkung U3 = 0 folgen aus (7.4.4,3) die Gleichungen: 

Ux = x1*U1 x + x2 *U2x      (7.4.4.4) 

Uy = x1 *U1y + x2 *U y 

Durch Auflösung der dieser Gleichungen nach den Steuerfaktoren xi und x2 folgt nun: 

  x1= (Ux *U2y - Uy *U2x) / (U1x*U2y - U1y *U2x)   (7.4.4.5) 

   x2 = (Uy *U1x - Ux *U1y) / (U1x*U2y - U1y*U2x)  

Die Betrachtung des Spannungssechsecks zeigt, daß sich das gesamte Spannungssechs-

eck aus Dreiecken zusammensetzen läßt, die jeweils von zwei benachbarten Spannungs-

punkten und dem Nullpunkt aufgespannt werden. 

Es genügt also, nur Spannungszeigertripel (U1,U2,0 ) zu betrachten, wobei U1 und U2 be-

nachbarte Spannungszeiger sind. 

Bei der Bestimmung der Steuerfaktoren ist zunächst der Sextant zu bestimmen, in dem 

der Spannungszeiger U liegt. Hierzu ist der Winkel arg(U) zu bilden und mit den Werten 

0°, 60°, 120°, 180°, 240°, 300° zu vergleichen. 
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Es ist nun günstig, den Spannungszeiger U in ein gedrehtes Koordinatensystem umzu-

rechnen. Die Achsen dieses statorfesten Koordinatensystems werden mit x‘ und y’ be-

zeichnet. 

Die Komponenten Ux und Uy  erhält man gemäß: 

Ux‘= cos(ß)*Ux -sin(ß)*Uy     (7.4.4.6)  

Uy‘ = sin(ß)*Ux + cos(ß)*Uy, 

wobei ß der Winkel zwischen der x' und der x-Achse ist. 

Bezüglich der Lage des x‘-y'-Koordinatensystems gibt es zwei Möglichkeiten: 

a) Die x'-Achse fällt mit dem dem Spannungszeiger U rechtsseitig benachbarten Zeiger Un 

zusammen. 

Es gilt hier mit U^ = |U1| : 

U1x’ = U^,  U1y‘ = 0      (7.4.4.7) 

U2x‘ = 0,5*U^ , U2y‘ =√3 /2 *U^ 

Aus (7.4.4.6) erhält man nun: 

Ux’ = x1 *U^ + x2 *0,5*U^     (7.4.4.8) 

Uy‘ = x2 √3/2 *U^ 

Durch Auflösung nach den Steuerfaktoren folgt hieraus: 

x1 = (Ux - 1/√3 *Uy ) /U^      (7.4.4.9) 

x2 = 2/√3 Uy/U^ 

Bild 7.11 zeigt, daß sich die Gleichungen (7.4.4.9) auch geometrisch herleiten lassen. 

Bild 7.11 Spannungszeigersynthese nach dem 3-Vektor-Verfahren 
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b) Das Koordinatensystem wird so gewählt, daß die x'-Achse identisch ist mit der Winkel-

halbierenden der beiden dem Spannungszeiger U benachbarten Spannungszeiger. 

Hier gilt: 

U1x = √3 /2 *U^, U1y = -0,5*U^     (7.4.4.10)  

U2x’ = √3/2 *U^ , U2y’ = 0,5*U^ 

Aus (7.4.4.6) folgt in diesem Falle: 

Ux ⋆= ( x1 +x2) *0,5‘√3 U^    (7.4.4.11) 

Uy > = (-x1 +x2 ) *0,5*U^ 

Durch Auflösung nach x1 und x2 erhält man: 

x1 = (Ux’ /√3  - Uy)/U^      (7.4.4.12) 

x2 = (Ux‘ ’/√3 + Uy‘ ) /U^ 

Eine weitere Möglichkeit des Vorgehens besteht darin, den Spannungszeiger U gleich zu 

Beginn der Rechnung in Polarkoordinaten umzurechnen: 

ß = arg(U) , U = |U| . 

Es lassen sich hier nun zwei Berechnungsarten unterscheiden: 

c) Bei der Vorgehensweise entsprechend a) wird der Winkel ß' = ß – ß0 

so gebildet, so daß 0° <= ß' < 60° ist, wobei ß0 aus den Werten 0° , 60°, 120°, 180°, 240°, 

300° zu wählen ist. Die Steuerfaktoren werden dann nach den folgenden Formeln be-

stimmt: 

x1 = (cos(ß') - 1/√3  *sin(ß'))*U/U^    (7.4.4.13) 

x2 = 2/√3  *sin(ß')*U/U^ 

Durch Umformung der ersten Gleichung unter Verwendung des Additionstheorems für die 

Sinusfunktion erhält man eine einfachere Form der obigen Formeln: 

x1 = 2/√3  *sin(60° - ß' ) *U/U^     (7.4.4.14) 

x2 = 2/√3  *sin(ß')*U/U^ 

d) Bei Vorgehensweise entsprechend b) wird der Winkel ß' = ß -ßo so gebildet, so daß  

-30°<= ß'<30° ist, wobei ßo aus den Werten 30°, 90°, 150°, 210°, 270°, 330° zu wählen ist. 

Für die Steuerfaktoren gilt dann: 

X1 = (cos(ß')/ √3  - sin(ß’))*U/U^     (7.4.4.15)  

X2 = (cos(ß')/ √3 + sin(ß'))*U/U^ 

Durch Anwendung der trigonometrischen Additionstheoreme folgt: 

x1 = 2/√3  *cos(ß'+30°)*U/U^     (7.4.4.16) 

x2 = 2/√3 *cos(ß'-30°)*U/U^ 
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Bild 7.12 Abhängigkeit der Steuerfaktoren x1, x2 und x3 vom Winkel ß' 

 

Die Berechnung nach c) oder d) besitzt gegenüber der Berechnung nach a) oder b) den 

Vorteil geringeren Rechenaufwands. Zudem sind hier die nichtlinearen Terme nur vom 

Winkel ß' abhängig. Die obigen Gleichungen zeigen, daß man bei der Bestimmung der 

nichtlinearen Terme mit einer tabellierten Winkelfunktion auskommt. 

Bild 7.12 zeigt den Verlauf der Steuerfaktoren x1 , x2 und x3 = 1-x1-x2 in Abhängigkeit vom 

Winkel ß’ des Spannungszeigers U, wobei ein Koordinatensystem nach a) bzw. c) zu-

grunde gelegt ist. 

Der Betrag U des Spannungszeigers hat im dargestellten Fall den Wert U = √3/2 U^. 

Ebenfalls erkennbar ist die relativ geringe Abweichung der Kurven vom linearen Verlauf. 

Werden also geringe Anforderungen an die Genauigkeit gestellt, so können anstelle der 

Funktionen (7.4.4.13) die entsprechenden linearisierten Funktionen verwendet werden. 

Diese sind gegeben durch: 

x1 = ß'/60° ⋆U/U^      (7.4.4.17)  

x2 = (1 - ß'/60°) ⋆U/U^ 

Durch Einsetzen dieser Funktionen in die Gleichungen (7.4.4.8) folgt: 

Ux- = ß'/60° *U + (1 - ß’/60°)*0,5*U^    (7.4.4.18)  

Uy- = (1 - ß’/60°)*√3 /2 *U^ 

Hieraus wird ersichtlich, daß der Weg des Spannungspunktes in Abhängigkeit vom Winkel 

ß' in diesem Fall eine Strecke ist, die dieselben Endpunkte hat wie der bei Verwendung 



-78- 

der exakten Formel entstehende 60°-Kreisbogen. 

7.4.5 VERGLEICH DER VERFAHREN 

In einigen Arbeiten werden 1-Vektor-Verfahren und 2-Vektor-Verfahren beschrieben und 

im Labor verwirklicht und erprobt (z.B. /II SCHWARZ/. Das 3-Vektorverfahren findet sich in 

der benutzten Literatur zuerst bei ORLIK /8/. 

Dem 1-Vektor-Verfahren und dem 2-Vektor-Verfahren haftet der Nachteil an, daß bei ihrer 

Verwendung ein vorgegebener Spannungszeiger nur mit einem mehr oder weniger großen 

Fehler erzeugt werden kann. Dieser Fehler bei der Spannungszeigersynthese bewirkt 

Fehler bei der Führung des Stromzeigers. Diese können nur dann klein gehalten werden, 

wenn die verwendete Taktfrequenz sehr groß ist. 

Dagegen ist beim 3-Vektor-Verfährens jeder Spannungszeiger innerhalb des Spannungss-

echsecks erzeugbar. Hieraus ergibt sich die Möglichkeit zur genauen und systematischen 

Führung des Stromzeigers. Abschließend läßt sich sagen, daß das 3-Vektor-Verfahren 

dem 1-Vektor-Verfahren und dem 2-Vektor-Verfahren unbedingt vorzuziehen ist. 

 

7.4.6 DER ZWISCHENKREISSTROM 

Aus dem Schaltbild ist ersichtlich, daß der Zwischenkeisstrom izk betragsmäßig stets mit 

einem der drei Strangströme übereinstimmt. Dies kann durch den Ansatz: 

izk = da *ia + db *ib + dc *ic 

berücksichtigt werden. Die Faktoren da, db und dc nehmen dabei abhängig vom anliegen-

den Spannungszeiger die Werte 0 oder 1 an. 

Einfacher als dieser Ansatz, der jedoch zum gleichen Resultat führt, ist die Berechnung 

des Zwischenkeisstroms über die Leistung. Die folgende Berechnung wird in nicht bezoge-

nen Größen durchgeführt. 

Die in den Stator eingespeiste elektrische Leistung ist nach (1.1.6.2) gegeben durch: 

P = 3/2 ⋆Re(u*i*) 

Die vom Zwischenkreis abgegebene Leitung ist: 

P = Uzk ⋆izk      (7.4.6.1) 

Daraus folgt: 

izk = 3/2 ⋆Re(u*i*)/Uzk      7.4.6.2) 

izk = Re(u/(2/3 *Uzk ) ⋆i*) 

Der hier auftretende Zeiger u/(2/3 *Uzk) hat -abgesehen vom Kurzschlußfall - den Betrag 1. 

Der Ausdruck Re(u*i*) ist nun gleich dem Skalarpodukt der zugeordneten Vektoren u und i 

Damit folgt: 
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izk = u/(2/3 *Uzk) ⋆i     (7.4.6.3) 

Wichtig ist es hier zu untersuchen, wann ein negativer Zwischenkreisstrom auftritt. 

Bei negativem Zwischenkreisstrom fließt dieser nämlich nicht über die Schaltelemente, 

sondern über die diesen parallelgeschalteten Freilaufdioden. Außerdem tritt eine momen-

tane Leistungseinspeisung in den Zwischenkreis auf. 

Gleichung (7.4.6.3) besagt nun, daß der Zwischenkreisstrom genau dann negativ ist, wenn 

der Winkel zwischen u und i betragsmäßig größer als 90° ist. 

 

7.4.7 POTENTIALE, SPANNUNGEN UND STRÖME BEI ANWENDUNG DES 3-

VEKTOR-VERFAHRENS 

Der Zeitverlauf der Klemmenpotentiale und der Spannungen wurde mit einem Computer-

programm berechnet. Dabei wurde von einem Drehfeld konstanter Winkelgeschwindigkeit 

und Amplitude ausgegangen. Die Rotordrehung wurde als zum Drehfeld synchron ange-

nommen. 

Bild 7.13 zeigt den zeitlichen Verlauf des Klemmenpotentials für den ersten Strang. Die 

dargestellte Funktion ist das durch Pulsweitenmodulation entstandene Abbild eines der in 

Bild 7.4 dargestellten Potentialverläufe. 

Bild 7.14 zeigt den zeitlichen Verlauf der Strangspannung im ersten Strang. 

Bild 7.15 zeigt den zeitlichen Verlauf der y-Komponente uy des Spannungszeigers im stator-

festen System. Die x-Komponente ux ist mit der in Bild 7.14 gezeigten Strangspannung iden-

tisch. Die Tatsache, daß bei der x-Komponente zwei Pulshöhen auftreten, während bei der 

y-Komponente nur eine Pulshöhe auftritt, ergibt sich unmittelbar aus der Lage des Span-

nungszeigersechsecks. 

Die Bilder 7.16 und 7.17 zeigen schließlich den zeitlichen Verlauf der Komponenten des 

Spannungszeigers im d-q-System. Der Sollwert der Komponente ua ist dabei Null. 

Die Zeitverläufe der Ströme wurden mit einem selbsterstellten Simulationsprogramm be-

rechnet. Dabei wurde wie bei den gezeigten Spannungsverläufen ein konstantes  

Drehfeld vorgegeben. Dem Rotor wurde eine zum Drehfeld synchrone Anfangsgeschwin-

digkeit gegeben. Damit die Zeitverläufe nicht durch zusätzliche Polradpendelungen beein-

flußt werden, wurde mit einem sehr großen Rotorträgheitsmoment gearbeitet.´Die 

Simulation wurde in bezogenen Größen durchgeführt. Bild 7.18 zeigt den zeitlichen Ver-

lauf der Komponenten des Stromzeigers im rotorfesten System bei der PWM-Taktzeit Tt 

=0,5. Die Rotorwinkelgeschwindigkeit beträgt hier ω = 0,314. Die PWM-Taktzeit wurde 

hier absichtlich sehr groß gewählt, damit die Stromschwankungen deutlich hervortreten. 

Bild 7.19 zeigt den zeitlichen Verlauf der Komponenten des Stromzeigers im rotorfesten 
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System bei der PWM-Taktzeit Tt =0,1. Die Schwankungen des Stroms sind hier sehr ge-

ring. Das System verhält sich bei der angegebenen PWM-Taktzeit praktisch so, als ob 

kontinuierliche Strangspannungen vorlägen. 

Die Bilder 7.20 und 7.21 zeigen den zeitlichen Verlauf des Zwischenkreisstroms izk bei Tt 

=0,5 und Tt =0,1 . Der Zwischenkreis muß so ausgelegt sein, daß die hier gezeigten 

Stromverläufe wenigstens näherungsweise möglich sind. 

 

.Bild 7.13 Potentialverlauf beim 3-Vektorverfahren 

 

Bild 7.14 Strangspannungsverlauf beim 3-Vektor-Verfahren 
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Bild 7.15 Zeitlicher Verlauf von Uy beim 3-Vektor-Verfahren 

Bild 7.16 Zeitlicher Verlauf von Ud beim 3-Vektor-Verfahren 
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Bild 7.17 Zeitlicher Verlauf von u, beim 3-Vektor-Verfahren 

Bild 7.18 Zeitlicher Verlauf von id und iq beim 3-Vektor-Verfahren mit bezogener Pulsmo-
dulationstaktzeit T = 0,5 

 

Bild 7.20 Zeitlicher Verlauf von izk beim 3-Vektor-Verfahren mit bezogener Pulsmodulation-
staktzeit T = 0,5 

Bild 7.20 Zeitlicher Verlauf von izk beim 3-Vektor-Verfahren 
mit bezogener Pulsmodulationstaktzeit T = 0,5 
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Bild 7.21 Zeitlicher Verlauf von izk beim 3-Vektor-Verfahren 
mit bezogener Pulsmodulationstaktzeit T = 0,1 
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7.4.8 DER EINFLUSS DER ZWISCHENKREISSPANNUNG 

Die Höhe der Zwischenkreisspannung Uzk hat nur geringen Einfluß auf die Welligkeit der 

Strangströme. Allerdings muß berücksichtigt werden, daß die Höhe von Uzk in Verbindung 

mit der Stufung der Taktzeit der Pulsbreitenmodulation die Güte der Spannungszeigersyn-

these beeinflußt. Die Anzahl der Stufen, in die die Taktzeit T aufgelöst wird, sei mit N be-

zeichnet. 

Um bei zwei verschiedenen Zwischenkreisspannungen Uzk1 und Uzk2 die gleiche Güte der 

Spannungszeigersynthese zu erzielen, muß für die zugehörigen Stufenzahlen N1 und N2 

gelten : 

Uzk1/ N1 = Uzk2 /N2       (7.4.8.1) 

Großen Einfluß hat dagegen die Zwischenkreisspannung auf die Dynamik des Systems. 

Entscheidend ist hier die maximal erzielbare Anstiegsgeschwindigkeit di/dt des Stator-

strombetrags. 

Diese ist bei i = 0 in nicht bezogenen Größen gegeben durch: 

di/dt = Uzk/Tel       (7.4.8.2) 

Um die bei vergrößertem Uzk vorhandene Dynamik voll nutzen zu können, ist eine entspre-

chend kleinere Taktzeit TR der Regelung oder Steuerung erforderlich. 

Der ausgehend vom stromlosen Zustand i = 0 bei Vollaussteuerung nach der Zeit TR vor-

handene Statorstrombetrag i(TR) ist für TR << Tel : 

i(Tr) = Uzk / Tel  ⋆TR      (7.4.8.3) 

Soll dieser Wert gleich bleiben, so muß für die bei den zwei verschiedenen Zwischenkreis-

spannungen Uzk1 und Uzk2 verwendeten Regeltaktzeiten TR1 und TR2 gelten: 

Uzk1 ⋆Tr1 = Uzk2 ⋆Tr2      (7.4.8.4) 

 

7.5 MOMENTENWELLIGKEIT BEI VERWENDUNG DES 3-VEKTORVERFAHRENS 

7.5.1 ABHÄNGIGKEIT DER MOMENTENWELLIGKEIT VON DER TAKTZEIT 

Die Synthese eines Spannungszeigers aus diskreten Spannungszeigern nach dem 3-Vek-

torverfahren bewirkt eine von der verwendeten Taktfrequenz abhängige Störung des We-

ges des Stromzeigers. Auch bei einer optimalen Regelung treten hier 

"Zickzackbewegungen" des Stromzeigers auf, die zu einer Welligkeit des von der Ma-

schine erzeugten Moments mel führen. 

Diese Welligkeit des Moments nimmt mit der verwendeten Taktzeit T zu. Die Welligkeit 

des Moments beeinflußt die mechanischen Größen Drehwinkel, Drehzahl und Winkelbe-

schleunigung des Systems. 
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Eine Welligkeit konstanter Amplitude bewirkt dabei bei geringer Frequenz eine größere 

Schwankung der mechanischen Größen als eine hohe Frequenz, bei der die Störungen 

durch das Trägheitsmoment des Systems stark gedämpft werden. Die Beeinflussung der 

mechanischen Größen durch die Momentenwelligkeit soll nun untersucht werden. 

Im folgenden wird die Abhängigkeit der Amplitude A der Momentenwelligkeit von der Takt-

zeit T der Spannungszeigersynthese näher untersucht. Dabei wird dabei hier nur der Fall 

des Rotorstillstands betrachtet. 

Für den Momentenverlauf wird dabei der folgende Ansatz gemacht: 

mel=mel0+Δ mel(t)     (7.5.1.1) 

Hierin ist mel0 der Mittelwert des Moments, während △ mel die überlagerte Momenten-

schwankung ist. 

 

7.5.2 MOMENTENWELLIGKEIT BEI ROTORSTILLSTAND 

Bei Rotorstillstand ist die Bewegungsgleichung des Stromzeigers im statorfesten System 

gegeben durch: 

i(t) = e-**i(0) + (l-e-t)*u    (7.5.2.1) 

Wie bereits früher ausgeführt, bewegt sich der Strompunkt im bezogenen Größensystem 

auf der Verbindungsstrecke vom Punkt i(0) zum Punkt u hin. 

Setzt man einen idealen Regler voraus, der ein konstantes Moment liefert, so erreicht der 

Strompunkt zur Zeit T wieder den Stromsollwert i(0) : 

i(T) = i(0)               (7.5.2.2) 
Der Strompunkt bewegt sich also auf einem Dreieck, dessen eine Ecke der Stromsollpunkt 

i(0) ist. 

Dieser Sachverhalt ist in Bild 7.22 dargestellt. Zusätzlich ist dort strichliert der Weg des 

Stromzeigers eingezeichnet, der sich ergibt, wenn die Reihenfolge der verwendeten Span-

nungszeiger umgedreht wird. 

Es wird deutlich, daß bei Vertauschung der Spannungszeigerfolge nicht nur die Schaltfre-

quenz der Transistoren reduziert wird, sondern auch erreicht wird, daß der Mittelwert des 

erzeugten Moments gleich dem vom Stromsollwert erzeugten Moment ist. 

Allerdings wird hierdurch - wie Bild 7.22 ebenfalls zeigt - eine Verdoppelung der Größe der 

Momentenschwankung bewirkt. 

Es wird nun untersucht, bei welcher Konstellation die größte Abweichung des Strompunkts 

vom Stromsollpunkt auftritt. Dies ist offenbar dann der Fall, wenn nur zwei Spannungszei-

ger an der Spannungserzeugung beteiligt sind. 

Das Dreieck entartet dann zu einer Strecke, die vom Strompunkt vorwärts und rückwärts 
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durchlaufen wird. 

Bild 7.22 Weg des Stromzeigers bei Rotorstillstand 

 

Es wird nun die Kombination eines Spannungszeigers mit dem Nullzeiger betrachet. 

Da sich das Problem nun eindimensional darstellt, kann von den Vektoren zu den Beträ-

gen derselben übergegangen werden. 

Wir betrachten nun den Fall i = i(0) = u/2 . 

Sind t1 und t2 die Zeiten, während derer die Spannungszeiger geschaltet sind, so muß, da-

mit der Spannungszeiger konstant bleibt, gelten: 

t1 = t2 =T/2 

Durch Einsetzen des Wertes von t1 in Gleichung (7.5.2.1) folgt nun: 

i(t1) = e-T/2*i + (1-e-T/2)*u     (7.5.2.3) 

Der Maximalwert A der Abweichung ist somit gegeben durch: 

A = i (t1) - i =(e-T/2-1)*i + (1-e-T/2)*u 

A = (e-T/2-1)*u/2 + (1-e-T/2)*u 

A = (1-e-T/2)*u/2      (7.5.2.4) 

Im allgemeinen Fall gilt: t1 = i/u *T 

Daraus folgt: 

A = i(t1) - i =(e-i“T/u - 1)*i + (1 - e-‘*T/u)*u 

A = (1 - e- 1⋆T/u) ⋆(u - i) 

Macht man hier den Näherungsansatz 1 - e~t= t , was für t<<1 zulässig ist, so erhält man: 

A = i*T/u *(u - i) = i*T *(1 - i/u)    (7.5.2.5) 

Das Maximum von A in Abhängigkeit von i läßt sich mit den Mitteln der Differentialrech-

nung bestimmen: 
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dA/di = T/u *(u - 2i)    (7.5.2.6) 

Das Maximum Amax wird also bei i = u/2 angenommen und hat den in (7.5.2.4) genannten 

Wert. Die Funktion A(i) ist symmetrisch bezüglich u/2 . 

Unter Verwendung des Näherungsansatzes ergeben sich die folgenden Werte: 

Amax = A(Umax/2) = T*Umax/4    (7.5.2.7) 

A(u/4) = A(3*Umax/4) = T*Umax⋆3/16 

Es läßt sich nun der Wert 

Amax rel = Amax /Imax     (7.5.2.8) 

definieren. 

Dieser relative "Stromfehler" ist zur Beurteilung der Güte der Spannungszeigersynthese 

geeignet. Unter Benutzung des Näherungsansatzes gilt: 

Unter Benutzung des Näherungsansatzes gilt: 

Amax rel = T * Umax/(4 * Imax)    (7.5.2.9) 

7.5.3 Auswirkung der Momentenwelligkeit auf die machanischen Größen 

Die durch Anwendung des 3-Vektorverfährens hervorgerufenen Momentenschwankungen 

sind i.A. nicht sinusförmig. Um eine analytische Berechnung zu ermöglichen, wird im folgen-

den dennoch eine sinusförmige Momentenschwankung zugrunde gelegt. 

Der Momentenverlauf sei gegeben durch: 

  mel = m0 + Δm*sin(ω*t)      (7.5.3.1) 

Dabei ist ω = 2*π*fr = 2*π/T die Kreisfrequenz der Welligkeit und Δm die Amplitude. 

Die mechanische Gleichung des Systems lautet: 

J⋆dω/dt = mel – mi      (7.5.3.2) 

, wobei mi das Lastmoment und J das Trägheitsmoment ist. 

Durch Einsetzen von (7.5.3.1) folgt: 

dω/dt = 1/J ⋆(m0 + Δm*sin (ω⋆t) - mi )    (7.5.3.3) 

Durch Integration ergibt sich hieraus: 

ω = ω0 + 1/J ⋆(m0 - mi)*t - △m/(J*ω) *cos(ω*t)    (7.5.3.4) 

Es wird nun der Maximalwert der Abweichung der Drehzahl ω vom ungestörten Verlauf 

betrachtet . Dieser wird mit Δω bezeichnet. Es ergibt sich: 

   Δω = Δm/(J*ωT) = Δm*T/(J*2π)     (7.5.3.5) 

Durch nochmalige Integration folgt aus (7.5.3.4): 

φ = φ0 + ω0 *t + 1/(2*J) ⋆(mo - mlast )*t2 -Δm/(J*ωr
2) *sin(ωr*t) 

Der Maximalwert Δφ der Winkelabweichung vom ungestörten Verlauf ist hier gegeben 

durch;  

Δφ = Δm/(J*ωT
2) = Δm*T2/(J*4π2 )    (7.5.3.6) 
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Mit (7.5.2.7) folgt: 

Δm = kmom' ⋆Amax = kmom *T*Umax / 4 

Hieraus erhält man: 

Δω =kmom ‚*T2*Umax / (8 πJ)      (7.5.3.7) 

Für die Schwankungsamplitude des Rotorwinkels ergibt sich: 

  Δφ = kmom ‚*T2*Umax / (16 π2 J)      (7.5.3.8) 

Bei Verwendung eines idealen Drehzahlreglers ist also die infolge des Spannungserzeu-

gungsverfahrens unvermeidbare Welligkeit der Drehzahl proportional zum Quadrat der 

verwendeten Taktzeit. 

Bei Verwendung eines idealen Lagereglers ist die unvermeidbare Schwankungsamplitude 

des Rotorwinkels sogar proportional zur dritten Potenz der verwendeten Taktzeit. 

Die verwendete Taktzeit besitzt also eine große Bedeutung für die erzielbare Güte der Re-

gelung. 

Durch die Beziehungen 7.5.3.7 und 7.5.3.8 sind absolute untere Grenzen für die bei Ver-

wendung von idealen Reglern erzielbare Drehzahlkonstanz und Rotorwinkelkonstanz ge-

geben. 

Die tatsächlich erreichbaren Werte werden abhängig von der verwendeten Regeltaktzeit 

erheblich über diesen Werten liegen. Durch die Beziehung 7.5.3.8 wird eine obere Grenze 

für die noch sinnvolle Winkelauflösung eines zu verwendenden Lageerfassungssystems 

gegeben. Um störende Anregungen des Reglers zu vermeiden, kann es sogar sinnvoll 

sein, die Winkelauflösung eines gegebenen Lageerfassungssystems nachträglich auf ei-

nen geeigneten Wert zu begrenzen. 

8. PM-SYNCHRONMASCHINE - WERKSTOFFE UND BAUFORMEN 

8.1 Magnetwerkstoffe 

Als Magnetmaterialien stehen für den Bau von permanentmagnetisch erregten Synchron-

maschinen die folgenden Materialien zur Verfügung: 

1. NeBFe (Neodym-Bor-Eisen), 

2. SmCOo (Samarium-Cobalt), 

3: Ferritwerkstoffe und 

4. ÄlNiCo (Aluminium-Nickel-Kobalt) 

Da bei AlNiCo-Werkstofen bereits kleine Gegenfelder eine bleibende Entmagnetisierung 

hervorrufen, sind sie trotz hoher Remanenzinduktion für den Einsatz in der permanenter-

regten Synchronmaschine ungeeignet. 

Bild 8.1 zeigt die Entmagnetisierungskennlinien von NdBFe, SmCOs und Ferrit im Ver-

gleich (nach /5 HENNEBERGER/). 
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Es wird deutlich, daß die Selten-Erden-Magnete wesentlich günstigere magnetische Ei-

genschaften (hohe Remanenzinduktion, hohe Koerzitivfeidstärke) besitzen als Ferrite, was 

sie für den Einsatz in permanenterregten Synchronmaschinen besonders geeignet macht. 

Dem Einsatz der Selten-Erden-Magnete stehen die hohen Kosten dieser Materialien ent-

gegen, die den Einsatz nur in hochausgenutzten Maschinen rechtfertigen. 

Tabelle 8.1 zeigt die Kennwerte der Magnetmaterialien (nach /8 ORLIK/). Der geringe spe-

zifische Widerstand von SmCOa und NdBFe ist ungünstig, da er die Entstehung von Wir-

belstömen zuläßt. Hier wird konstruktiv Abhilfe geschaffen, indem die Magnete aus 

mehreren Einzelmagneten aufgebaut werden, die durch Klebung mit nichtleitendem Mate-

rial gegeneinander isoliert werden /8 ORLIK/. 

Bild 8.1 Entmagnetisierungskennlinien einiger Magnetmaterialien (entnommen aus /5 Hen-
neberger/) 
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Bild 8.2 Schnittbild eines permanentmagnetisch erregten Synchronmotors 

 

 
Ferrit SmCO3 Nd-B-Fe 

rel. Permeabilität -- 1,05 1,05 1,05 

Remanenzinduktion B [T] 0,35 0,95 1,25 

Koerzitivfeldstärke Hc [kA/m] 265 710 860 

spez. Widerstand [ Ohm cm] >106 5*10-s 15*10-5 

Tabelle 8.1 Kennwerte von Hochenergie-Permanentmagneten 

 

8.2 MOTORBAUFORMEN 

Permanentmagnetisch erregte Synchronmotoren werden als Stabläufer- und als Schei-

benläufermotoren gebaut. Diese Bauformen erfüllen besonders gut die Forderung nach 

geringem Trägheitsmoment des Rotors. Dabei werden Stabläufermotoren häufig für Ma-

schinenantriebe verwendet, während für Roboterantriebe Scheibenläufermotoren bevor-

zugt werden. 

Das Motorgehäuse besteht i.A. aus Druckgußmaterial. 

Bei Scheibenläufermotoren besteht der Rotor aus faserverstärktem Kunststoff, in den die 

Magneten eingebettet sind. Wichtig ist hier, daß der Luftspalt zwischen Rotor und Stator 
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so klein wie möglich gehalten wird. Bild 8.2 zeigt das Schnittbild des permanentmagne-

tisch erregten Motors SE 718 der Fa. Mavilor (aus /12/). 

A.1 BEZEICHNUNGEN 

Komplexe Werte und Größen werden durch Unterstreichung gekennzeichnet. 

Die zu x konjugiert komplexe Zahl wird mit x⋆ bezeichnet. 

Mit Im(x) und Re(x) werden Imaginärteil und Realteil der komplexen Größe x bezeichnet. 

Der Betrag von x wird mit |x| oder x bezeichnet. Mit arg(x) wird das Argument ar-

ctan(Im(x)/Re(x)) bezeichnet. Matrizen und Vektoren werden durch Fettdruck gekenn-

zeichnet. Die transponierte Matrix zur Matrix A wird mit AT bezeichnet. Die Determinante 

der Matrix A wird mit det(A) bezeichnet. 

A.2 VERWENDETE FORMELZEICHEN 

B magnetische Induktion 

H magnetische Feldstärke 

ϴ magnetischer Fluß 

L Induktivität 

R ohmscher Widerstand 

Z Impedanz 

i,I Strom 

i Stromzeiger 

u,U Spannung 

Uzk Zwischenkreisspannung 

U,Umax Inkreisradius des Spannungszeigersechsecks 

u Spannungszeiger 

V Potential 

zp Polpaarzahl 

Φ  Rotorwinkel 

t,T Zeit,Zeitdauer 

Tel elektrische Zeitkonstante 

ω Winkelgeschwindigkeit des Rotors 

P Leistung 

m Drehmoment 

ml Lastdrehmoment 

mel elektrisch erzeugtes Moment 

J Trägheitsmoment von Rotor und Last 

kemk  EMK-Konstante des Motors 

kmom Momentenkonstante des Motors 
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ANHANG B: UMRECHNUNG DER KONSTANTEN DES MOTORS 
MAVILOR SE 718 IN BEZOGENE GRÖßEN 

B.1 UMRECHNUNGFORMELN FÜR DIE HERSTELLERANGABEN 

Da der Sternpunkt der Maschine für Messungen nicht zugänglich ist, sind die vom Herstel-

ler angegebenen Größen stets zwischen zwei Motorklemmen gemessen worden. 

Die vom Hersteller angegebenen Größen werden deshalb hier mit dem tiefgestellten Index 

H versehen, um sie von den auf den Strang bezogenen Größen, die hier mit dem tiefge-

stellten Index S versehen werden, zu unterscheiden. 

Bei den Größen kann ferner unterschieden werden zwischen auf die mechanische Dreh-

zahl Wiecu und auf die elektrische Drehzahl wei bezogenen Größen. 

Im folgenden werden für die einzelnen vom Hersteller angegebenen Größen die Umrech-

nungsformeln angegeben: 

1. Wicklungswiderstand RH gemessen zwischen zwei Maschinenklemmen bei 80 Grad 

Celsius. Also gilt für den Strangwiderstand: 

Rs = Rh/2     (B.1.1) 

2. Wicklungsinduktivität Lh . Gemessen zwischen zwei Maschinenklemmen bei einer Fre-

quenz von 1 kHz. Also gilt für die Stranginduktivität: 

    Ls = Lh/2     (B.1.2) 

3 .Spannungen Uh 

Effektivwert gemessen zwischen zwei Klemmen bei sinusförmiger Ansteuerung. 

Unter der Annahme eines sinusförmigen Verlaufs und einer Phasenverschiebung von 2/3π 

erhält man für den Effektivwert: 

Us,eff = Uh/√𝟑      (B.1.3) 

Daraus folgt: 

Us,amp = Uh √𝟑/𝟐     (B.1.4) 

4. Ströme Ih 

Effektivwert des Phasenstroms bei sinusförmiger Ansteuerung. 

IS,AMP = Ih ⋆/√𝟐     (B.1.5) 

5. EMK-Konstante kEMK h 

Quotient aus zwischen zwei Klemmen induzierter Spannung EH und mechanischer Dreh-

zahl wmech (in rad/s), wenn der Motor als Generator betrieben wird. 

kEMK H = Eh / wmech    (B.1.6 ) 

Mit (B.1.4) erhält man: 

kEMK eff mech = kEMK H /√𝟑    (B.1.7) 

Bezieht man die EMK-Konstante auf die elektrische Drehzahl ωel, so ergibt sich: 
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kEMK eff el = kEMK eff mech /zp = kEMK H / (√𝟑 ⋆zp )     (B.1.8) 

Durch Umrechnung auf Amplitudenwerte folgt: 

kEMK amp el = kEMK eff el ⋆√𝟐 ⋆/2 - kEMK H / (√𝟑/𝟐 ⋆zp )   (B.1.9) 

6. Drehmomentkonstante Rmom b 

Quotient zwischen Drehmoment mei und Effektivwert Ih des Stroms einer Phase bei sinus-

förmiger Ansteuerung und dem Lastwinkel 0°. Reibungs-, Eisen- und Zusatzverluste sind 

hierbei nicht berücksichtigt. 

Kω0 mh = mel /Ih     (B.1.10) 

 

Hieraus folgt mit (B.1.5): 

kMOM S aap = kMOM H//2      (B.1.11) 

7. Motorkonstante Kh 

Kh 0 kt m k h * kω o m h / Rh  (B.1.12) 

Die Motorkonstante hat die Einheit Nm/(rad/s). 

Die Motorkonstante kann interpretiert werden als das Verhältnis zwischen dem vom Motor 

erzeugten Bremsmoment und der Rotorwinkelgeschwindigkeit bei kurzgeschlossenen Mo-

torklemmen. Dies gilt nur für Rotorgeschwindigkeiten, bei denen die Induktivität des Sta-

tors gegenüber seinem Widerstand zu vernachlässigen ist. 

Für die umgerechnete Motorkonstante K ergibt sich also: 

K = kEMK amp el * kM o M S amp /Rs 

K = (kEMK H /(/(3/2) * Zp) * kMOM h//2) /(Rh/2) 

K = 2*kEMK H * kMOM h /Rh / (/3*Zp)     (B.1.13) 

8. Mechanische Zeitkonstante Ta 

Ta = K/J      (B.1.14) 

Dabei ist J das Trägheitsmoment des Rotors. 

Ta ist die Zeit ,in der bei Kurzschlußbetrieb die Winkelgeschwindigkeit ω vom Anfangswert 

ω0 auf den Wert w0/e abgeklungen ist. 

9. Elektrische Zeitkonstante Tel 

Tel H= L/R      (B.1.15) 
 

Sie charakterisiert den Stromanstieg oder -abfall bei einer sprungartigen Spannungsände-

rung. 

Es gilt:    Tel S = Tel H 
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B.2 HERSTELLERANGABEN ZUM MOTOR 

 Die folgenden Angaben zum Motor Mavilor SE 718 sind dem Datenblatt der Hersteller-

firma /12/ entnommen: 

Nenndrehzahl nmech nenn = 3000 U/min = 50 U/sec 

Polpaarzahl zp = 4 

Trägheitsmoment J = 0,4*10"3 kg m2 

mech. Zeitkonstante Tmech H = 3,9 msec 

Drehmomentkonstante kMOM H = 0,71 Nm/A 

EMK-Konstante kEMK H = 0,41 Vs/rad 

Wicklungswiderstand RH = 2,8 Ohm 

Wicklungsind. LH = 8 mH 

el. Zeitkonstante Tel H = 2,8 msec 

Motorkonstante Kh = 0,1 N2 m2 /W 

Maximalwerte:    

maximale Drehzahl n  mech max = 6000 U/min = 100 U/sec 

Dauerstrom(max) ID H = 5,9 A 

Impulsstrom(max) II H = 49 A 

B.3 UMGERECHNETE PARAMETER DES MOTORS 

Die gemäß Abschnitt 1 umgerechneten Parameter des Motors SE 718 sind in der folgenden 

Übersicht zusammengestellt. 

Mit dem berechneten Wert für kEMK amp el kann nun die Momentenkonstante 

 kMOM  = k Ms amp nach der Beziehung (1.2.7.6) berechnet werden: kMOM = 3/2 ⋆zp ⋆kEMK 

Durch Einsetzen folgt: 

kMOM =3/2*4⋆0,084 Vs/rad = 0,504 Nm/A 

Der so berechnete Wert stimmt mit dem durch Umrechnung der Herstellerangabe gemäß 

(B.1.11) gewonnenen Wert überein 

Drehmomentkonstante 

EMK-Konstante 

Kmom,amp 

i = 0,084 

Vs/rad 

 = 0,50 Nm/A 

Kemk,amp = 0,084 Vs/rad  

Strangwiderstand Rs = 1,4 Ohm 

Stranginduktivität Ls = 4 mH 

Trägheitsmoment Jel = 0,1*10-3 kgm2 

Motorkonstante K = 0,03 N2m2/W 

elektrische Zeitkonstante Zeit-

konstante Zeitkonstante Zeit-

konstante 

Tel =2,8 ms 

mechanische Zeitkonstante Tmech = 3,32 ms 

maximale Drehzahl nel, max = 400 U/s 

max. Winkelgeschw. ωel, max = 2513 rad/s 
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Dauerstrom(max) ID S anp = 8,3 A 

Impulsstrom(max) II s amp = 69 A 

 

B.4 UMRECHNUNG DER STRANGGRÖßEN IN BEZOGENE GRÖßEN 

Bei Betrachtung des Gesamtsystems bestehend aus Motor und Pulswechselrichter darf 

der Leitwiderstand Ron der MOS-FET's nicht vernachlässigt werden. 

Er hat bei den hier benutzten MOS-FET's BUZ 382 den Wert Ron = 0,40 Ohm. 

Dieser Widerstand Ron kann dem Strangwiderstand Rs zugeschlagen werden. Für die fol-
genden Berechnungen wird deshalb anstelle des Widerstands Rs der Widerstand Rs' ver-
wendet: 

Rs ' = Rs + Ron =1,4 + 0,4 Ohm = 1,8 Ohm   (B.4.1) 
Für die in Kapitel 2 definierten Bezugsgrößen ergeben sich also die folgenden Werte: 

   w0 = Rs'/Ls = 1,8 Ohm/4 mH = 450 rad/s   (B.4.2) 

U0 = kEMK amp el *w0 

U0 = 0,084 Vs/rad ⋆450 rad/s = 37,8 V   (B.4.3) 

I0 = kEMK amp el /Ls 

I0 = 0,084 Vs/rad / 4 mH = 21 A    (B.4.4) 

Damit erhält man folgende bezogene Maximalwerte: 

ωmax bez = 2513 rad*s-1 / 450 rad*s-1 = 5,6 pu    (B.4.5) 

IDS bez = 8,3 A/ 21 A = 0,395 pu       (B.4.6) 

IS bez= 69 A/ 21 A = 3,286 pu     (B.4.7) 

Für das 'bezogene' Trägheitsmoment J' des Rotors gilt gemäß Gleichung (2.2.11): 

J' = J/Te i 2 = J ⋆ωo2 

j' = 0,4*10"3 kgm2 ⋆4502 s"2 = 81 Nm      (B.4.8) 

Für die 'bezogene' Momentenkonstante kMom ' gilt gemäß Gleichung (2.2.6): 

kMOM⋆= 3/2 ⋆Zp ⋆kEMK
2/L 

kMOM’ = 3/2 ⋆4 ⋆(0,084 Vs/rad)2/4 mH = 10,6 Nm    (B.4.9) 

Die Zwischenkreisspannung Uzk ist umzurechnen gemäß: Uzk,bez = Uzk/U0 . Für die folgen-

den Rechenschritte wird eine Zwischenkreisspannung Uzk = 80 V zugrundegelegt. 

Damit erhält man: 

Uzk bez = 80 V/37,8 V = 2,12 pu     (B.4.10) 

Für den Betrag Ubez der sechs diskreten Spannungszeiger gilt gemäß (6.2.1): 

Ubez = 2/3 ⋆Uzk 

Hieraus folgt: 

Ubez = 2/3 ⋆2,12 pu = 1,41 pu    (B.4.11) 
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Der Radius Umax,bez des Inkreises des Spannungszeigersechsecks, der für die Realisie-

rung des stationären Zustands bestimmend ist, hat nach (6.2.3) den Wert: 

Umax,bez = √3 /2 ⋆Ubez 

Also gilt: 

Umax,bez = √3 /2 ⋆1,41 pu = 1,22 pu   (B.4.12) 

 

B.5 PARAMETER DES MOTORS IN BEZOGENEN GROßEN 

Die Parameter des Motors SE 718 in bezogenen Größen sind in der folgenden Übersicht 

zusammengestellt.  

Ids,bez  = 0,40 pu 

IIs,bez   = 3,29 pu 

Wmax,bez  = 5,6 pu 

J‘  = 81 Nm 

kmom‘  = 10,6 Nm 

U max bez =1,22  pu 
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